方程是永恆:愛因斯坦(Albert Einstein)

1879年,愛因斯坦出生於德國南部小鎮烏姆(Ulm)。1880年,他隨家人搬到慕尼黑(München)。與一般印象相反,愛因斯坦小時候因為鮮少說出完整句子,父母曾以為他有學習障礙。

愛因斯坦在慕尼讀中學。他非常討厭德國學校著重背誦的教育方式,課堂上總自己思考問題,不專注聽課,所以經常被老師趕出班房。1894年,愛因斯坦15歲,他父親赫爾曼・愛因斯坦(Hermann Einstein,1847-1902)在慕尼黑的工廠破產,迫使舉家遷往意大利帕維亞(Pavia),留下愛因斯坦在慕尼黑完成中學課程。同年12月,愛因斯坦以精神健康理由讓學校準許他離開,前往帕維亞會合家人。

這次出走改變了愛因斯坦的一生,甚至可說改變了人類文明的科學發展。

愛因斯坦不懂意大利語,不能在帕維亞上學。他早有準備,前往瑞士德語區蘇黎世(Zürich)投考蘇黎世聯邦理工學院(Eidgenössische Technische Hochschule Zürich,通常簡稱ETH Zürich)。結果愛因斯坦數學和物理學都考得優異成績,但其他科目如文學、動物學、政治和法語等等卻全部不合格。

蘇黎世聯邦理工學院給予愛因斯坦一次機會,著他到附近小鎮阿勞(Aarau)去完成中學課程,明年再考。在這段期間,愛因斯坦暫住在斯特・溫特勒教授(Jost Winteler,1846-1929)家中。愛因斯坦很喜歡開明、自由的溫特勒教授一家,利用這一年溫習各科目,更與溫特勒的女兒瑪麗・溫特勒(Marie Winteler,1877-不詳)相戀。

瑞士的教育方式與德國的不相同,並不強調背誦。瑞士學校老師非常鼓勵學生發表意見,不會以權威自居,這一點與討厭權威的愛因斯坦非常合得來。愛因斯坦曾於寄給溫特勒的信中寫道:「對權威不經思索的尊重,是真理的最大敵人。」[1]他稱自己為世界主義者,不喜歡德國日漸升溫的國家主義。溫特勒教授就幫助愛因斯坦放棄德國國籍,愛因斯坦因而成為了無國籍人士,他很喜歡這個「世界公民」身份。

一年後,愛因斯坦再次投考蘇黎世理工學院。物理、數學當然成績優異,其他科目亦合格,愛因斯坦順利被取錄入讀物理學系。然而,他父親卻期望他進入工程學系,將來繼續家族工廠,因此他們大吵了一場。

愛因斯坦大學時繼續他我行我素的性格,經常逃課去上其他科目的課堂,所以都要他的同學們幫他抄筆記,他才知道考試範圍。加上愛因斯坦以刺激權威為樂,教授們都不喜歡這個又煩又懶的學生,不願意幫他寫好的推薦信,所以他畢業後一直找不到工作。

在學時,愛因斯坦與物理系唯一一個女同學米列娃・馬利奇(Mileva Marić,1875-1948)相戀。根據膠囊資料顯示,愛因斯坦與米列娃的書信中曾提到他們有個女兒叫麗瑟爾。不過後來他們就再沒提到她,歷史學家估計麗瑟爾出生不久就死於猩紅熱。愛因斯坦與米列娃在1903年結婚,之後他們生了兩個兒子——大子漢斯和二子愛德華。他們最終在1914年分居,1919年離婚。

愛因斯坦於1900年畢業,取得了教學文憑。可是,由於教授們都不喜歡愛因斯坦,他申請大學職位的申請信全都石沉大海。愛因斯坦非常沮喪,以致他父親於1901年寫信給威廉・奧斯特瓦爾德教授(Wilhelm Ostwald,1853-1932,1909年諾貝爾化學獎得主)請求他聘請愛因斯坦當助手,或者至少寫給愛因斯坦鼓勵說話。當愛因斯坦快要連奶粉錢也不夠的時候,他大學時的舊同學格羅斯曼・馬塞爾(Grossmann Marcell,1878-1936)[2]的岳父以人事關係幫他在瑞士專利局找到了一份二級專利員的工作,愛因斯坦才度過難關。

愛因斯坦喜歡在早上就把所有工作做完,利用整個下午在辦公桌上思考物理問題。一個從學生時代就已令他著迷的問題就是:如果他能夠跑得和光一樣快,會看到什麼?

詹士・馬克士威(James Clerk Maxwell,1831-1879)的電磁學方程組說明光線就是電磁場的波動,而電磁波亦已被亨里希・赫茲(Heinrich Hertz, 1857-1894)的無線電實驗證明存在。科學家認為,既然光是波動,就跟所有其他波動一樣需要傳播媒介:聲波需要粒子、水波需要水份子,而光需要「以太」才能在宇宙直空中傳播。

愛因斯坦於1905年發表狹義相對論。在這之前牛頓的絕對時空觀早已令科學界困擾多年。著名的邁克遜—莫雷實驗結果與牛頓力學速度相加法則相違背[3]。無論地球公轉到軌道的哪個位置,無論實驗儀器轉向哪個方向,光線都相對以太以同樣秒速30萬公里前進,分毫不差。這就好像下雨時無論向哪個方向跑,雨點總是垂直落在我們的頭頂。難道雨點知道我們跑步方向,故意調整落下角度嗎?

光速不變概念非常革命性。因為光速不變,在我們眼中同時發生的兩件事,其他人看起來卻不一定同時。時間與空間有微妙關係,兩者結合在一起成為時空。當年大部分科學家都認為問題必然出在馬克士威電磁方程式,但愛因斯坦卻不這麼想。他認為,我們常識中對「同時」的理解根本有誤。不過,愛因斯坦並非以力學切入這個問題,而是思考一個著名的電磁現象:法拉第電磁感生效應。

法拉第電磁感應定律指出,移動的帶電粒子會同時產生電場與磁場,靜止的帶電粒子則只會產生電場,沒有磁場。但相對論說宇宙並沒有絕對空間,速度只有相對才有意義。而物理現象必須是唯一的,所以我們就有個問題:究竟有沒有磁場存在?把電磁鐵穿過線圈,我們可以做以下三個實驗:

(一)固定電磁鐵,移動線圈;
(二)固定線圈,移動電磁鐵;
(三)固定線圈及電磁鐵,改變磁場強度。

實驗結果:三個實驗之中都有電流通過線圈,而且數值完全一樣!

我們可以從實驗結果得出甚麼結論?基於完全不同的物理過程,實驗(一)與實驗(二)和(三)得到相同的電流。實驗(一)產生電流的是磁場,而實驗(二)和(三)產生電流的卻是改變的磁場所感生的電場。嚴格來說,實驗(一)的結果並非法拉第定律,因為法拉第定律所指的是磁場感生電場。正是這區別令愛因斯坦得到靈感,他在論文中說這個現象顯示無論是電動力學與力學,根本不存在絕對靜止這回事。

愛因斯坦預期相對論會在科學界引起廣泛討論,結果卻是異常安靜。愛因斯坦突然拋棄了物理「常識」,此舉令科學界摸不著頭腦。馬克斯・普朗克(Max Karl Ernst Ludwig Planck,1858-1947,1918 年諾貝爾物理奬得主)可能是唯一一個明白相對論重要性的人,他讀到論文後寫過信去問愛因斯坦解釋清楚一些理論細節,更派馬克斯・馮勞厄(Max von Laue,1879-1960,1914 年諾貝爾物理奬得主)去拜訪愛因斯坦。馮勞厄發現愛因斯坦竟然不是大學教授,而是瑞士專利局裡的小職員。回家路上,愛因斯坦送給馮勞厄一支雪茄,馮勞厄嫌品質太差,趁愛因斯坦不為意從橋上把雪茄丟了下去。

愛因斯坦導出那舉世聞名的質能關係方程式E=mc2,解釋了放射性同位素輻射能量來源和太陽能量來源。不過愛因斯坦後來在1921年獲頒的諾貝爾物理學獎並非因為相對論,而是因為他應用普朗克的量子論解釋了光電效應。

愛因斯坦並沒有滿足於狹義相對論。狹義相對論只適用於慣性坐標系,可是宇宙裡絕大部份坐標系都是非慣性的,例如地球就是個加速中的坐標系。愛因斯坦知道必須找出一個新理論去解釋加速坐標系中的運動定律。他幾乎是獨力地與新發展的數學分支「張量分析」在黑暗之中搏鬥了十年之久,最後才於1915年11月完成廣義相對論。我們已經觀賞過的宇宙大爆炸,都遵守廣義相對論的方程式。

愛因斯坦尋找正確的廣義相對論公式期間,米列娃與愛因斯坦的關已經變得非常惡劣,而且愛因斯坦的母親非常不喜歡他倆的婚姻,米列娃她就在1914年帶著兩個孩子離開他們的家柏林,到瑞士去了。與孩子分離使愛因斯坦非常傷心,因為他堅持留在德國做研究。不過,他與後來第二任妻子、表妹愛爾莎・愛因斯坦(Elsa Einstein,1876-1936)[4]的曖昧關係已經一發不可收拾。

我們穿越時間來到了1915年11月底,愛因斯坦就快發現能夠描述整個宇宙的新理論了。狹義相對論裡時空是平的,並且所有慣性坐標系都是等價的。廣義相對論描述的是更廣泛的彎曲時空,它能描述所有坐標系。只要指定一套時空度規、給定能量與物質密度分佈,就能夠計算出時空曲率如何隨時間改變。相對論大師約翰・惠勒(John Archibald Wheeler,1911-2008)曾說:「時空告訴物質如何運動;物質告訴時空如何彎曲。」[5]

狹義相對論改正了以往區分時間與空間的常識,而廣義相對論則把萬有引力描述成時空曲率,連光線也會被重力場彎曲,再次顛覆了常識。我們只需要把一組十式的愛因斯坦場方程式配合相應時空度規,任何宇宙的過去與未來都能夠計算出來。

當然很多人質疑廣義相對論的正確性,因為科學理論必須接受實驗驗證。終於在1919年,英國天文學家亞瑟・愛丁頓(Sir Arthur Stanley Eddington, 1882-1944)來到西非畿內亞灣普林要比島(Principe)以日全食觀測結果驗證了廣義相對論。1919年5月29日早晨,下著傾盆大雨。幸好到了下午1時30分雨停了,不過還有雲。愛丁頓努力拍攝了許多照片,希望能夠拍到太陽附近的星光偏折。最後結果出來了:在拍得的照片中,有一張與愛因斯坦的預測數值吻合。其實在科學裡,一個證據並不足以支持一個理論,但愛丁頓是個廣義相對論狂熱擁護者,他立即對外公佈廣義相對論已經被證實了。

廣義相對論場方程式顯示,宇宙若不是正在收縮就是正在膨脹。我們已經知道,當年愛因斯坦認為宇宙永遠存在,因此他在場方程式裡加入了宇宙常數,用來抵消重力,使宇宙變得平衡,不會擴張也不會收縮。但這樣的宇宙極不穩定,只要非常細微的擾動,宇宙就會膨脹或收縮。就好像把一個保齡球放在筆尖上,理論上保齡球可以停在筆尖上,但只要一點點風就能使保齡球滾下來。

不過,這個常被人說成是愛因斯坦一生最大錯誤的宇宙常數,其實的確存在。錯有錯著,歷史再次證明愛因斯坦正確,儘管這並非愛因斯坦的原意。1929年,愛德溫・哈勃(Edwin Hubble,1889-1953)發現星系正在遠離地球,而且越遙遠的星系後退的速度就越快。這只能有兩個解釋:要麼地球是宇宙的中心、要麼宇宙正在膨脹。當愛因斯坦知道哈勃的發現後,他後悔在廣義相對論方程式裡加入了人為的宇宙常數[6]。

今天,科學家已經發現宇宙不單正在膨脹,而且膨脹正在加速。暗能量、或者宇宙常數,因而在上世紀末重新復活。一個正在加速膨脹的宇宙,比一個靜止的宇宙需要更巨大的宇宙常數。而且事實上,即使有宇宙常數,宇宙亦不可能靜止。

愛因斯坦在第二次世界大戰時,因為擔心納粹德國會製造出原子彈,所以他曾寫信致羅斯福總統要求美國搶先研究製造原子彈。到戰後才發現,當時的德國根本無法造出原子彈,因為大多數的科學家已經被希特拉趕走了。那天早上,當愛因斯坦聽到原子彈已經把日本廣島夷為平地,他就呆坐在家,久久未能平復心情。從此以後,愛因斯坦極力主張廢除核武,導致他被50年代著名的FBI胡佛探長(John Edgar Hoover,1895-1972)認為他是共產黨間諜。理所當然,胡佛始終無法找到任何證據捉拿愛因斯坦。

愛因斯坦因以普朗克的光量子概念解釋了光電效應而獲得1921年諾貝爾物理獎。光電效應論文證明了光同時是波動和粒子,稱為光的波粒二象性,是量子力學的基本原理。不過,儘管量子力學和廣義相對論的所有預測都未曾出錯,兩者卻互不相容。現在的科學家十分清楚:要不是量子力學是錯的、或廣義相對論是錯的、或兩者都是錯的。

愛因斯坦於1923年7月11號在瑞典哥德堡舉行的Nordic Assembly of Naturalists會講上講了他的諾貝爾獎講座。雖然他得到的是1921年諾貝爾獎,可是因為諾貝爾奬委員會認為在1921年的提名名單中沒有人能夠得獎,跟據規則該年度之獎項順延至下一年頒發,所以愛因斯坦實際於1922年得到1921年的諾貝爾獎。而由於在1922年諾貝爾獎頒獎典禮舉行時愛因斯坦正在遠東旅行,直到1923年愛因斯坦才在哥德堡講出他的諾貝爾奬講座。順帶一提,愛因斯坦獲頒諾貝爾獎不久之前,他正在香港。

愛因斯坦雖然有份為量子力學打下基礎,後來卻變得不相信量子力學,例如他與兩個物理學家共同提出的愛因斯坦—波多爾斯基—羅森悖論[7]就是為了推翻量子力學的。可是,科學家後來發現愛因斯坦—波多爾斯基—羅森悖論的假設「局域性」是錯的。廣義相對論認為宇宙是「局域」的,只有無限接近的兩個點才能有因果關係,因此推翻了牛頓重力理論中的「超距作用」。但量子力學卻說,兩個相距非常遠的粒子也能夠互相影響,因此量子力學與廣義相對論的假設是不相容的。

愛因斯坦一生都在尋找量子力學的錯處,結果是一個都找不到。他晚年一直在研究統一場論,希望統一電磁力和重力。不過,在他死前,人類並不知道除電磁力和重力以外還有強核力和弱核力。所以愛因斯坦根本沒有足夠的資訊去進行統一場論的研究,歷史注定要他失敗。

愛因斯坦一生對金錢、物質、名譽等不感興趣,他喜愛的東西大概可說只有物理和女人。他希望找出大自然的終極奧秘,並以優美、永恆不變的數學方程式表達出來。愛因斯坦覺得「政治只是一時,方程式卻是永恆。」[8]愛因斯坦聲稱自己並不擅長政治,但他在一生中卻經常對種族平等、世界和平等政治大議題作公開演講。因此他也引來許多人對他的政治立場表達不滿。

當以色列的第一任總統哈伊姆・魏茲曼(Chaim Azriel Weizmann,1874-1952)於1952年逝世時,以色列官方曾邀請愛因斯坦擔任第二任總統。最後,愛因斯坦寫了一封回信感謝並婉拒。

1955年4月18號,愛因斯坦在撰寫祝賀以色列建國七週年的講稿中途逝世。他生前堅拒以人工方法勉強延長生命,他說:「當我想要離去的時候請讓我離去,一味地延長生命是毫無意義的。我已經完成了我該做的。現在是該離去的時候了,我要優雅地離去。」[9]

[1]”Autoritätsdusel ist der größte Feind der Wahrheit.” The Private Lives of Albert Einstein (1993), p. 79.

[2]格羅斯曼在愛因斯坦建立廣義相對論期間幫助愛因斯坦解決數學上的問題,可說是廣義相對論的促進者。注意格羅斯曼是匈牙利人,名稱習慣先姓後名,所以格羅斯曼是他的姓,馬塞爾才是他的名。

[3]邁克遜—莫雷實驗是阿爾伯特・邁克遜(Albert Abraham Michelson, 1852-1931)和愛德華・莫雷(Edward Morley, 1838-1923)在1887年合作做的實驗,測量地球在以太參考系裡的速度。

[4]原名愛爾莎・路文塔爾(Elsa Löwenthal)。

[5]”Spacetime tells matter how to move; matter tells spacetime how to curve.” Geons, Black Holes, and Quantum Foam (2000), p. 235.

[6]流傳愛因斯坦說過這是他「一生中最大的錯誤」的故事應該是假的。

[7]愛因斯坦—波多爾斯基—羅森悖論是愛因斯坦、鮑里斯・波多爾斯基(Boris Podolsky,1896-1966)、納森・羅森(Nathan Rosen,1909-1995)於1935年合寫的一篇論文中的思想實驗,希望證明量子力學自相矛盾。

[8]”… politics are only a matter of present concern. A mathematical equation stands forever.” Brighter than a Thousand Suns: A Personal History of the Atomic Scientists (1958), p. 249.

[9]”I want to go when I want. It is tasteless to prolong life artificially. I have done my share, it is time to go. I will do it elegantly.” The ruptured abdominal aortic aneurysm of Albert Einstein, Surgery, Gynecology & Obstetrics, 170 (5): 455-8.

延伸閱讀:
淺談 E=mc^2:愛因斯坦 137 歲誕辰
拋開常識的學者:愛因斯坦 (Albert Einstein)

Advertisements

宇宙膨脹可能均速、也可能加速

愛因斯坦在 1916 年正式發表廣義相對論之前,宇宙被普遍認為是物理世界的一個背景舞台。廣義相對論描述時間、空間、物質、能量的互動,把宇宙由背景變成了主角。

愛因斯坦原本並不相信宇宙能夠膨脹或者收縮。縱使他知道他親手推導發現的方程式顯示了一個必然結果:宇宙不是在膨脹就是在收縮,他覺得這是不可能的。數學邏輯本身不可能出錯,但愛因斯坦也相信自己的推導沒有錯。因此,他只好在他的方程式加入一個人為的、不影響方程式正確性的項,就是所謂的宇宙常數 (cosmological constant)。

screen-shot-2016-10-26-at-13-29-11
愛因斯坦場方程式 (Einstein field equations)。這是一組十式獨立的方程式,描述時空、物質和能量的互動,其數學解能告訴我們宇宙如何演化。紅色方格內的項就是宇宙常數。

由於重力只能吸引、不能排斥,宇宙不可能是靜止的。想像一個拋向半空的球,它不是正在上升就是在下降,除了由上升變成下降的一瞬間和撞到地面之外,球在重力的影響下必然在運動。在星系的巨大尺度,宇宙只由重力支配,因此亦必然在運動。

引入宇宙常數的愛因斯坦以為這樣就能解決他的問題:使宇宙靜止。宇宙常數有著與重力相反的性質:使物質互相排斥。愛因斯坦認為充滿物質的宇宙在重力的影響下會收縮,因此加入宇宙常數去平衡重力的吸引,希望得到一個靜止的宇宙。

可是,哈勃 (Edwin Hubble) 發現星系正在互相遠離,而且越遙遠的星系後退的速度就越快。這只能有兩個解釋:要麼地球是宇宙的中心、要麼宇宙正在膨脹。當愛因斯坦知道哈勃的發現後,他後悔在廣義相對論方程式裡加入了人為的宇宙常數 (流傳他說過這是他「一生中最大的錯誤」的故事應該是假的)。哈勃更邀請愛因斯坦到他位於美國加州的巨型天文望遠鏡,讓愛因斯坦親眼看到宇宙膨脹的證據。

“Historically the term containing the ‘cosmological constant’ ƛ was introduced into the field equations in order to enable us to account theoretically for the existence of a finite mean density in a static universe. It now appears that in the dynamical case this end can be reached without the introduction of ƛ.” – Albert Einstein

2goqqjr6bmk8lbgq31bikok4slogn5
哈勃 (中) 和愛因斯坦 (左) 使用威爾遜山天文台 (Mount Wilson Observatory) 的 100 吋望遠鏡觀察宇宙。這是當時世界最大的望遠鏡。(Credit: Caltech Archives)

在今天,宇宙常數有一個更性感的名字,叫做暗能量 (dark energy)。1998 年,三位天文學家 Saul Perlmutter、Brian Schmidt 和 Adam Riess 帶領的研究發現宇宙不單正在膨脹,而且膨脹正在加速。這是一個非常重大的發現,連諾貝爾物理獎也罕有地在 2011 年頒給這三位天文學家 (因為天文學研究很難有實際應用)。暗能量、或者宇宙常數,因而在上世紀末重新復活。一個正在加速膨脹的宇宙,比一個靜止的宇宙需要更巨大的宇宙常數 (事實上,即使有宇宙常數,宇宙亦不可能靜止)。

宇宙加速膨脹變成了標準的教科書內容。宇宙加速膨脹的證據來自觀察遙遠星系中的超新星爆發。超新星爆發是一顆恆星死亡的訊號。超新星也有不同的種類,其中一種叫做 Ia 型的超新星爆發時所釋放的能量是 (差不多) 固定的,所以透過測量 Ia 型超新星爆發的視亮度就能計算出其距離。原理就如蠟燭火光,放在比較遠的距離看起來就會比較暗、放在比較近的距離看起來就會比較明亮。

Saul Perlmutter、Brian Schmidt 和 Adam Riess 帶領的研究發現,相對於一個均速或減速膨脹的宇宙,Ia 型超新星爆發的視亮度比預期的暗太多了。換句話說,這些 Ia 型超新星位於比預期更遙遠的距離;換句話說,宇宙在加速膨脹。

1k-kfov5xye6rtbq40zy0ja
不同的宇宙模型 (左至右):減速、均速、加速膨脹。(Credit: The Cosmic Perspective/Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, and Mark Voit)

這是上世紀的發現,他們的研究用了七十多顆 Ia 型超新星。現在,Ia 型超新星的樣本數目已達當年的十倍之多。隨著數據量增加,天文學家亦逐漸開始使用更合適的統計方法更新 Ia 型超新星的宇宙膨脹研究。例如 J. T. Nielsen、A. Guffanti 和 S. Sarkar (2016) 的研究與及其他幾個獨立研究均發現,大量的 Ia 型超新星爆發的數據與均速膨脹的宇宙都吻合。他們認為當年使用的統計方法過於簡單,未必適用於少量數據。

不過,他們的研究同時亦指出,加速膨脹的宇宙同樣與 Ia 型超新星爆發的數據吻合。換句話說,我們最多只能說宇宙可能正在均速或加速膨脹,並不能排除其中一個可能性。在加速膨脹的宇宙模型裡,天文學家需要比全宇宙所有物質和能量的總和大約 14 倍之多的暗能量才能解釋觀測結果。如果宇宙膨脹並沒有加速,那麼暗能量可能並沒有我們以為的那麼多、或者根本不需要暗能量。

screen-shot-2016-10-26-at-11-27-52
Nielsen et al. (2016) 的論文顯示均速 (紅色線) 和加速 (藍色線) 膨脹宇宙模型都可以解釋 Ia 型超新星爆發的觀測數據。

Nielsen et al. (2016) 的論文並沒有如某些媒體所寫的「證明宇宙沒有加速膨脹」。我們必須小心分辨媒體的可信性,而且即使是有公信力的媒體,也不可能避免所有錯漏。在看科學新聞時,如果對報導有所懷疑,最好的做法就是直接找原論文來看、或請教相關的研究專家。

愛因斯坦究竟有否犯下「一生最大錯誤」,仍有待大自然提供更加多的科學數據。

Nielson et al. (2016) 論文:Scientific Reports 6, Article number: 35596 (2016)

後記:

宇宙學家朋友 Godfrey 讀過此文後,贈與一些補充資料。

宇宙常數和暗能量的概念有點不同。宇宙常數可以是正數、零、或負數,當負數時其影響與重力相反。宇宙常數是一種真空能量 (vacuum energy),其密度不會隨宇宙體積變大而減小。可是,物質和能量的總和不會增加,因此質能密度會隨宇宙體積變大而減小。所以在平直 (flat) 的膨脹宇宙之中,如果宇宙常數非零,無論數值多少最後也必定能支配宇宙演化。

另外,Ia 型超新星並不是宇宙加速膨脹的唯一證據,例如宇宙微波背景 (cosmic microwave background) 也顯示宇宙可能在加速膨脹。諾貝爾奬得主 Adam Riess 更親自寫了一篇文章解釋誤解,他說宇宙加速膨脹的可能性只是由 99.99999% 降至 99.97% 而已,與某些傳媒誇張頭條相去甚遠。

Adam Riess 在 Scientific American 的文章:Have Astronomers Decided Dark Energy Doesn’t Exist?

封面圖片:宇宙演化模型 (Credit: NASA/WMAP Science Team)

延伸閱讀:

讀論文》- Edward Ho

淺談 E=mc^2:愛因斯坦 137 歲誕辰》- 余海峯

你也能懂相對論》- 余海峯

科學家巡禮:拋開常識的學者.愛因斯坦 (Albert Einstein)》- 余海峯

愛因斯坦教授 你是正確的

萬一觀測結果與你的理論不符呢?

1919 年,愛因斯坦的一個學生如此問他。那天,愛丁頓 (Sir Arthur Stanley Eddington) 在西非普林西比島 (Príncipe) 以電報向全世界傳送他的日全食觀測結果。他的觀測顯示星光的確被太陽重力扭曲,成為愛因斯坦廣義相對論的第一個證據。

若然如此,我會為上帝感到惋惜。我的理論是正確的。

愛因斯坦這樣回答。

今年 2 月 11 號,激光干涉重力波天文台 (LIGO) 正式發表人類史上首次直接觀測到重力波 GW 150914 的證據。6 月 14 號,LIGO 再發表第二個重力波 GW 151226 的證據。

Screen Shot 2016-06-17 at 16.06.03
GW 151226 重力波訊號。(Abbott et al. 2016, PRL 116, 241103)

這兩個重力波都是雙黑洞結合系統所釋放出的。另外比較少人留意的是 LIGO 同時發表了第三個疑似重力波 LVT 151012 的證據。相比 GW 150914 與 GW 151226 的 99.99997%,LVT 151012 只有 87% 機會是真實的重力波。

Screen Shot 2016-06-17 at 16.15.57
三個重力波訊號在天空上的可能來源方向。(Abbott et al. 2016, arXiv:1606.04856)

這三個重力波訊號打開了人類觀察宇宙的另外一個窗戶。幾千年的人類文明以來,我們終於能夠以電磁波以外的方法觀察這個宇宙。如果人類文明能夠延續下去,這肯定佔有未來歷史書中極其重要的一頁。

另一方面,這三個重力波訊號也帶給了人類另一個難題:為什麼擁有幾十倍太陽質量的雙黑洞系統比我們想像的還要多?這對於人類了解恆星演化和宇宙演化等課題極為重要。

今年剛好是愛因斯坦發表廣義相對論 100 週年。97 年前,廣義相對論的第一個預言「星光偏折」得到了證實。今年,廣義相對論的最後一個預言「重力波」也得到了驗證。科學就是如此的一門學問,能夠用嚴謹的數學作出在 100 年後以 99.9999% 準確度證實的預言。

我想像,如果愛因斯坦得知人類在過去一個世紀窮幾代科學家一生努力才能夠在今天證實他的預言,他應該會說:「我早就知道,我的理論是正確的。」

封面圖片:LIGO, NOVA | Einstein’s Big Idea

延伸閱讀:

GW 150914 論文:Observation of Gravitational Waves from a Binary Black Hole Merger

GW 151226 論文:GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

三個重力波觀測結果的論文預印:Binary Black Hole Mergers in the first Advanced LIGO Observing Run

LIGO 第 2 次發現重力波 再證愛因斯坦廣義相對論》- 立場報導/eh

重力波:愛因斯坦的最後預言 (上)》- 余海峯

重力波:愛因斯坦的最後預言 (中)

續上文《重力波:愛因斯坦的最後預言 (上)

2016 年 2 月 11 號香港時間 2330,美國激光干涉重力波天文台 (LIGO Lab) 舉行了記者會,發表了已經經過同儕審查的重力波存在的直接證據。愛因斯坦在 100 年前發表的廣義相對論的所有預測,終於全部被天文觀測證實。是次發現的重力波,在 LIGO 升級完成成為 aLIGO 之後就立即探測到了。

Screen Shot 2016-02-11 at 18.20.40
已經過同儕審查、LIGO Lab 剛剛於 Physical Review Letters 發表的論文。

LIGO Lab 於 2015 年 9 月 14 號 09:50:45.391 UT 探測到一個重力波,代號 G184098。由於 aLIGO 探測器共有兩個,分別位於路易斯安那州和華盛頓州,兩者相距 3,002 公里。因此同一個重力波會在不同時間抵達兩個 aLIGO 探測器,使用三角測距法就能夠計算出其波源距離地球有多遠。

經過計算,G184098 位於銀河系外非常遙遠的地方,其重力波以光速穿越宇宙大約 13 億年,在 2015 年 9 月 14 號到達地球。LIGO Lab 分析 G184098 的訊號,發現其頻率與波幅都隨時間上升,然後突然消失。使用超級電腦對比愛因斯坦方程式的模擬,我們能夠確定 G184098 的訊號是黑洞雙星系統產生的,即兩個恆星質量的黑洞互相公轉、最後結合。

LIGO 研究團隊指出,這兩個黑洞的質量大約各為 30 倍太陽質量。兩個黑洞結合時輸出的功率,是全宇宙所有恆星的總和的 50 倍!不過因為黑洞結合時間極短,所以釋放出的總能量「只有」3 個太陽質量,即是把 5,970,000,000,000,000,000,000,000,000,000 公斤的質量一起變成能量。嗯,自己使用 E=mc2 計算吧……

重力波的發現,除了是愛因斯坦廣義相對論的一個漂亮驗證、完美地證實了他的最後一個預言外,對人類科學發展還有非常重要的意義。400 年前,伽俐略首先用望遠鏡看向宇宙,開創了天文觀測的新一頁。400 年之間,人類打開了從可見光到紅外線、微波、射電、紫外線、X 光、伽瑪射線等所有電磁波天文學,發現了許許多多前所未見的事物。誰又能夠預計重力波天文學會把什麼有趣和新奇的物理帶給我們看?

在廣義相對論發表 100 週年的今天,容許我們再次向愛因斯坦致敬:愛因斯坦教授,你的理論是正確的。

einstein-bicycle

延伸閱讀:

愛因斯坦:廣義相對論》- 余海峯

LIGO Lab 官方網站

LIGO Lab 發表於 Physical Review Letters 研究期刊的論文

封面圖片:LIGO Lab/Wikipedia

重力波:愛因斯坦的最後預言 (上)

愛因斯坦在 1916 年正式發表廣義相對論,至今剛好 100 週年。廣義相對論徹底推翻牛頓重力理論,把重力和加速度統一。當時空被物質或能量所扭曲,就會產生所謂的重力。重力原來非「力」,而是時空結構和質能互動的結果。

廣義相對論與量子力學成為現代物理學的兩大支柱。這兩個理論各自描述宏觀和微觀的世界,其預測亦被越來越精確的實驗逐一驗證。愛因斯坦的廣義相對論預言的時空扭曲效應,例如重力透鏡、宇宙膨脹、黑洞等等,都已經被天文觀測所證實。

在 100 年後的今天,美國的激光干涉重力波天文台 (LIGO) 將舉行記者會,發表愛因斯坦廣義相對論的最後一個預言–重力波 (gravitational wave) –的直接證據。

廣義相對論說,時空會被非常重的物質扭曲。想像時空是一張彈床的表面,上面放一個網球和一個保齡球。保齡球比較重,所以彈床表面會被保齡球壓得比較深。把網球滾向保齡球附近,網球就會沿著保齡球附近被扭曲的彈床表面公轉,看上去彷彿網球被保齡球的一道無形的「力」給拉了過去。這就是重力的表現。

Screen Shot 2016-02-11 at 01.00.23
兩個極高質量天體互相環繞重心公轉,在時空結構之中形成波浪。Credit: LIGO Lab

如果有兩個保齡球在彈床上呢?這樣的話,兩個保齡球就會互相圍繞其重心公轉。彈床表面就會因為兩個保齡球循環施壓而形成向外擴散的彈床波浪。說回重力,當兩個極高質量的天體 — 通常是中子星或黑洞 — 互相圍繞公轉,時空就會被它們的重力循環拉扯而形成向外擴散的波浪。這個重力的波浪,就叫做重力波。

直接探測重力波非常困難,即使極高質量的天體,其所造成的重力波波幅仍然非常小。位於路易斯安那州和華盛頓州的兩個 LIGO 重力波探測器,使用中學物理都會學到的簡單光干涉原理,把兩束互相垂直的激光各自沿著 4 公里長的隧道發射,在隧道盡頭用鏡反射回起點重新結合,形成干涉圖像。

ligo-hanford-aerial-02
華盛頓洲的 LIGO 重力波探測器,可見其兩條互相垂直、各長 4 公里的激光隧道。Credit: LIGO Lab

如果重力波經過地球,因為互相垂直的方向的時空扭曲程度不相同,兩束激光所走過的距離就會有所不同,干涉圖像就會改變。LIGO 在 2015 年 9 月升級完成成為 Advanced LIGO (aLIGO) 之後,能夠探測大約 10-22 到 10-23 的距離變化,大約等於萬分之一個質子大小。經過計算,此極其細小的距離變化與宇宙中最強烈的重力波源 — 黑洞雙星系統或中子星雙星系統 — 發出的重力波強度吻合,因此科學家預期 aLIGO 將能首次直接探測重力波,證實它的存在。

在今天 LIGO 的記者會,我們將有望親眼看到愛因斯坦廣義相對論的最後一個預言被證實。雖然我已得知部分內容,但由於保密協定,我不能在這篇文章寫關於今次觀測的內容,留待於今天記者會稍後上載的第二篇文章《重力波:愛因斯坦的最後預言 (中)》之中解釋。敬請期待!

延伸閱讀:

愛因斯坦:廣義相對論》- 余海峯

LIGO Lab 官方網站

封面圖片:NOVA “E=mc²: Einstein’s Big Idea” 截圖

拋開常識的學者:愛因斯坦 (Albert Einstein)

愛因斯坦 (Albert Einstein, 1879 – 1955) 從小就喜歡思考。有一次,他父親送他一個指南針,他看著永遠指向南北的針,感覺到大自然一定深藏奧祕,引起了他對自然現象的好奇。但其實他的天才並非早早就顯現出來。小時候的愛因斯坦鮮少說出完整的句子,所以父母以為他學習語言有問題;中學老師認為他不可能有出息;大學時期的物理成績並不好,加上他以刺激權威為樂,教授們都不喜歡這個又煩又懶的學生,所以愛因斯坦畢業後一直找不到工作。在他已婚並有所出、且快要山窮水盡的時候,才靠他的好友以人事關係幫他在瑞士專利局找到了一份二級專利員的工作。

他喜歡在早上就把一整天的工作做完,利用整個下午的時間在專利員的辦公室思考物理問題。其一中個最令他著迷的思想就是:「如果一個人能夠跑得跟光一樣快,會看到甚麼樣子的世界?」

Einstein_patentoffice

愛因斯坦於 1905 年發表狹義相對論 (Special Relativity)。在這之前的十多年中,牛頓的絕對時空觀點早已令科學界困擾多年,牛頓力學體系已經搖搖欲墜了。著名的 Michelson-Morley experiment 的結果顯示並不存在一個「絕對靜止」的參考系「以太」。而且,由 James C. Maxwell 歸納出的電磁方程式組可以推導出光的速度永遠不變、與觀測者的運動狀態無關。這嚴重違反了人類對這個世界的認知,因為我們知道光是一種波動,而波動需要媒介來傳播;就如水波需要水、聲波需要空氣。

在牛頓的宇宙觀裡,時間與空間互不相干。假設你在地鐵裡用速度 u 向前跑,你相對於地面的速度 w 就會等於地鐵的速度 v 加上 u,即

w=u+v

愛因斯坦卻說這條看似理所當然的公式是錯的。如果你在地鐵中打開電筒,電筒發出的光以光速 c 相對於地鐵車箱向前跑,但根據相對論,這束光相對於地面的速度不會是

c+v

而是

\dfrac{c+v}{1+\dfrac{cv}{c^2}}=c

所以光速不變這個概念是非常革命性的。當時大部分人都認為是 Maxwell 的電磁方程式錯了,但愛因斯坦卻不這麼想。他認為,我們常識中對「同時」的理解根本有誤。他發現,在光速不變的前提下,在 A 君眼中同時發生的兩件事,在 B 君看起來就不一定是同時的。換句話說,絕對的「同時」根本不存在!愛因斯坦的相對論解釋了牛頓的古典力學所不能解釋的現象,同時亦把「絕對時間」和「絕對空間」的概念拋棄了。在相對論之中,時間與空間有著微妙的關係,兩者並且結合在一起成為「時空」。任何想把時間與空間想像成獨立分開的兩種東西的概念,都與相對論違背。

本來愛因斯坦預期他的相對論會在科學界引起大地震,可是結果卻靜得可憐,長時間地連一封寄來查詢理論細節的信也沒有。後來發現這是因為世界上根本沒有多少人讀得懂相對論。雖然狹義相對論的數學並非特別深奧難懂,但愛因斯坦突然地拋棄了所謂的「常識」,此舉實在令科學界也摸不著頭腦。

愛因斯坦在發展狹義相對論的同時,亦為物理學的許多分支做了很多開性創性的工作。例如分子運動論、量子論等等,都留有他的足跡。那道舉世聞名的質能關係方程式

E=mc^2

也是在此其間導出的,此方程式可謂直接影響了二十世紀的整個科學發展:解釋幅射、太陽能量來源;促成核能、原子彈、氫彈的發展等等。以上他的每一個工作,保守估計都至少值得獲得一個諾貝爾獎。不過,愛因斯坦後來在 1921 年獲頒的諾貝爾物理學獎,並非因為他的相對論,而是因為他在應用量子論解釋光電效應的貢獻。

Screen Shot 2015-03-04 at 11.47.45

愛因斯坦並沒有滿足於狹義相對論。他深明這個理論只能應用於慣性坐標之間,可是現實中絕大部份的坐標系都是加速坐標系 (例如地球),所以他意識到必須要找出一套新理論,以解釋一切慣性與加速坐標系中的運動定律。他幾乎是獨力地與新發展的高等數學「張量分析」在黑暗之中搏鬥了十年之久,最後才於 1916 年完成人類歷史上最偉大的科學進程之一:廣義相對論 (General Relativity)。

因為愛因斯坦的母親不承認他與第一任妻子 Mileva Marić 的婚姻,而且 Marić 十分憎恨德國,她在 1914 年把兩個孩子由柏林帶到瑞士去了。對於與孩子的分離,愛因斯坦感到非常傷心,因為他堅持留在德國做他的物理研究;不過,他與他的表妹 Elsa E. Löwenthal 的曖昧關係,亦已經一發不可收拾。

儘管離婚已是遲早的事,愛因斯坦仍對德軍的暴行以及廣義相對論的發展非常關心。當德國入侵中立國比利時後,德軍的文宣部說服了 93 位學者簽署一份聲明,內容為「同意德軍的侵略行為是保護日耳曼文化的必要舉動」,簽署人裡竟包括愛因斯坦的好朋友、量子論的創始人之一、1918 年諾貝爾物理學獎得主馬克斯.普朗克 (Max K. E. L. Planck)!幾天之後,愛因斯坦簽署了一份反戰爭、建立統合歐洲的和平聯合聲明,但包括他在內的 100 位受邀聯署學者中,只有 4 位簽了名。

1914 年的諾貝爾物理學獎由愛因斯坦的好朋友 Max von Laue 獲得,以表揚他發現 X 光的繞射現象。其實愛因斯坦在同年也因「相對論、擴散現象及重力現象」被提名諾貝爾物理學獎,但評審委員會中有人認為相對論尚未得到實驗驗證、有人認為愛因斯坦的名聲過高、也有人根本看不懂相對論。

愛因斯坦強硬批評大部分德國人都是瘋子,厭惡虛偽的科學家同行。1915 年,同樣也是和平主義者的法國作家 Romain Rolland 與愛因斯坦見面。Rolland 在見面後總結說在當時的德國「他 [愛因斯坦] 是少數幾位保有自由思想、不具奴性的人。」

愛因斯坦是一位積極的筆友。他樂於回答任何人關於任何事的信件,而且每一封都親自認真回信。他也會花時間去幫助那些有求於他的人,例如幫助學生找工作、回答小孩子關於宇宙、物理等等問題。不過在 1915 年秋天的其中 5 個星期裡,他突然把所有的演講邀請推掉,信也不回、飯也不吃地在自己的書房中瘋狂工作。有一次,他的未來繼女 Margot Einstein 發現他竟然把蛋放到湯裡去煮,原因是愛因斯坦想吃蛋又想喝湯,但卻沒有閒暇去剝蛋殼!

到了 11 月尾,愛因斯坦簡直興奮不已,因為他就要發現能夠描述整個宇宙的新理論了。在他的狹義相對論裡,時空是平直的、而且所有有慣性坐標系都是等價的。但他的新理論「廣義相對論」描述的是更一般性的彎曲時空結構,是一個能描述一切坐標系的理論!只要指定一套時空度規、並給定能量與物質的密度在時空中的分佈,就能夠計算出時空的曲率、曲率如何隨時間改變。相對論大師 John A. Wheeler 曾說:「時空告訴物質如何運動;物質告訴時空如何彎曲」。

1905 年發表的狹義相對論把人們對區分時間與空間的「常識」概念改正過來,愛因斯坦於 1916 年發表的廣義相對論把重力描述成時空的幾何性質而非一種力,再次顛覆人類的「常識」。經過了 11 年在黑暗中摸索的孤獨旅程,愛因斯坦終於看到耀眼的陽光,能如何教他不興奮呢?只需要把一組十式的「愛因斯坦方程」(Einstein Equations) 配合指定的時空度規,任何宇宙的過去與未來都能夠計算出來。

當然,很多人質疑廣義相對論的正確性,因為科學理論必須接受實驗驗證。廣義相對論所提供的驗證方法對當時的技術來說是非常大的挑戰。基本上,廣義相對論有以下幾種驗證方法:測量重力紅移、光線偏折及時間延滯效應。現在,這三種效應已經被天文學家一一發現,而且與愛因斯坦的計算相當吻合。

在此不得不提英國的天文學家愛丁頓 (Arthur S. Eddington) 觀察日全食時太陽附近的星光,確認了光線偏折效應一事。當時是 1919 年,正值第一次世界大戰。當愛丁頓得悉愛因斯坦的理論預測光線會被太陽的重力彎曲時,他就帶隊跑到西非外海的索布拉爾 (Sobral) 去等待日全食的來臨。由於平時太陽光相對於星光極其猛烈,若非於日全食時月球把太陽遮蔽起來之時,根本無法觀察太陽附近的星光。

1919 年 5 月 29 日早晨,愛丁頓以為計劃要告吹了,因為天上下著傾盆大雨。幸好到了下午 1 時 30 分雨停了,只是還有雲。愛丁頓努力地拍攝許多照片,希望能夠拍到太陽附近的星光偏折。6 月 3 日,結果出來了:在拍得的照片中,有一張與愛因斯坦的預測吻合!在科學裡,一個證據並不足以支持一個理論,但愛丁頓這個廣義相對論狂熱擁護者卻立即對外公布:「廣義相對論已經被證實了!」

當愛因斯坦的一個學生知道了愛丁頓的觀測結果之後,便告訴愛因斯坦:他的理論被證實了。愛因斯坦卻說:「我早就知道我的理論是正確的。」

學生大惑不解,問:「萬一觀測結果與你的理論不符呢?」

愛因斯坦答道:「那樣的話,我會為上天感到惋惜。我的理論是正確的。」足可見愛因斯坦對他的廣義相對論的正確性表現的信心。

關於這個故事,還有一段小插曲。話說愛因斯坦的好友普朗克當時也都是徹夜未眠,因為他想知道愛因斯坦的理論究竟是對還是錯的。愛因斯坦聽說了,就說:「如果普朗克相信廣義相對論是正確的話,就會跟我一樣,早早上床睡覺。」

Einstein_1921_by_F_Schmutzer_-_restoration

愛因斯坦在第二次世界大戰時,因為擔心納粹德國會製造出原子彈,所以他曾寫信致羅斯福總統要求美國搶先研究製造原子彈。到戰後才發現,當時的德國根本無法造出原子彈,因為大多數的科學家已經被希特拉趕走了。那天早上,當愛因斯坦聽到原子彈已經把日本廣島夷為平地,他就呆坐在家,久久未能平復心情。之後,他說:「如果早知道這樣,我寧願去當一個鐘錶匠。」

從此以後,愛因斯坦極力主張廢除核武,導致他被 50 年代著名的 FBI 胡佛探長 (John Edgar Hoover) 認為他是共產黨間諜。理所當然,胡佛始終無法找到任何證據捉拿愛因斯坦。

不過,愛因斯坦也是人,也會犯錯,而且會犯下歷史上眾多科學家都會犯的錯:對舊有概念的固執。他從廣義相對論方程導出了一個結果:宇宙若不是正在收縮,就是正在擴張。愛因斯坦認為這是不可能的,他認為宇宙是永遠存在的,沒有起點也沒有終點。因此,在不影響數學的正確性下,他在他的愛因斯坦方程裡加入了一個常數項,用來抵消重力,使宇宙變得平衡,不會擴張也不會收縮。

其實這樣的宇宙是極不穩定的。只需要一點非常細微的擾動,宇宙就會向其中一方傾倒。情況就好像把一個保齡球放在筆尖上,理論上保齡球是可能停在筆尖上的,可是只需要一點小小的風就能使保齡球滾下來。想必愛因斯坦也認識到這一點,可是他就是無法拋開成見,堅持加入這個常數項。後來,愛因斯坦去到哈勃 (Edwin Hubble) 工作的天文台參觀望遠鏡,哈勃給他看宇宙膨脹的證據。愛因斯坦接受了自己的錯,說這是他一生中最大的錯誤。

不過,這個愛因斯坦一生最大錯誤的常數項被現在的科學家稱為「宇宙常數」(cosmological constant) 或「黑暗能量」(dark energy),無數觀測已經證明宇宙常數的確存在。錯有錯著,歷史又再一次證明愛因斯坦是對的,儘管這並非愛因斯坦的原意。

einstein10_0

愛因斯坦也是量子力學 (quantum mechanics) 的始祖之一。他的諾貝爾獎得獎論文描述的光電效應 (photoelectric effect) 打破人們對光是一種波動的常識:他證明了光同時亦是粒子!這個現象現在稱為波粒二象性 (wave-particle duality),是量子力學的基本原理。可是,廣義相對論與量子力學卻偏偏互不相容!換句話說,要不是量子力學是錯的、或廣義相對論是錯的、或兩者都是錯的。

愛因斯坦雖然有份為量子力學打下基礎,後來卻變得不相信量子力學,例如他與兩個物理學家共同提出的愛因斯坦-波多爾斯基-羅森悖論 (EPR paradox) 就是為了推翻量子力學的。可是,事實證明愛因斯坦又錯了,EPR 悖論的假設「局域論」(locality) 是不存在的。

廣義相對論認為宇宙是「局域」的,只有無限接近的兩個點才能有因果關係,因此推翻了牛頓重力理論中的「超距作用」(action at a distance)。但量子力學卻說,兩個相距非常遠的粒子也能夠互相影響,因此量子力學與廣義相對論的假設是不相容的。

越來越多證據顯示,量子力學應該是正確的,廣義相對論需要被修正或者被新的重力理論代替。愛因斯坦一生都在尋找量子力學的錯處,結果是一個都找不到。直到今天,所有量子力學實驗都只是不斷地在證明它本身的而且確沒有錯。現在有些理論物理學家在尋找所謂的「萬有理論」(Theory of Everything)、M 理論 (M Theory, M for Mother/Matrix)、「統一場論」(Unified Field Theory) 等等,希望把廣義相對論修正/代替,使得量子力學與重力能夠結合為一。

愛因斯坦晚年一直在研究統一場論。在他死前,人類只發現了自然界四種基本力的其中兩種:重力交互作用 (gravitational interaction) 和電磁交互作用 (electromagentic interaction)。他不知道除此以外還有強交互作用 (strong interaction) 和弱交互作用 (weak interaction)。所以愛因斯坦根本沒有足夠的資訊去進行統一場論的研究,歷史注定要他失敗。

愛因斯坦帶給人類非常多。相對論、光電效應、證明原子存在 (他的博士論文解釋了布朗運動)、E=mc^2、宣揚和平及主張廢除核武、不受約束的思維等等,都非常值得我們思考、學習。他的朋友都說,愛因斯坦永遠都像一個小孩子,對世界的好奇心從未改變。如果我們都能夠從他身上學習到一少部分,世界或許會變得更美好。

謝謝你,愛因斯坦。生日快樂。

einstein5