恆星的死亡筆記

每當我們仰望天際,除了高樓大廈和比 IFC 更高的樓價外 (例如把 1000 萬港幣全部換成 10 蚊銀,疊起來有 7 座 IFC 那麼高),我們看到天空。 天空中、雲層外,人類只古以來,每天都會看到一個發光的球體。這個球體每天環繞地球轉一個圈,照亮我們的大地,為地球上所有的生命提供能量。

這個發光的球體,就是太陽。

自我們在森林中生活的祖先以來,這個太陽日復一復、年復一年,從未間斷地照耀著。我們很自然會好奇:「太陽是否永恆不變?」

太陽是一顆星。星的英文 star,中文正式名稱叫「恆星」。用上永恆的恆,因為恆星的壽命與人類或其他所有動植物比起來,就如永恆一樣的長。可是,就連宇宙的壽命也不是無限永恆的,恆星也有其壽終正寢的一天。

我們的太陽現在大約有 50 億歲,天文學家估計它仍可繼續發光另一個 50 億年。為什麼太陽的壽命可以有 100 億年那麼長呢?而其他恆星的壽命又會否不同?

nasa-pleiades-star-cluster在晴朗的夜空,我們可以看到很多星星。這些星星其實就是別的太陽。如果我們細心看,可以觀察到不同的星星有不同的顏色。我們的太陽當然是橙色的了,而有一些星星是藍色的,另外一些看上去則比太陽更偏紅。

為什麼恆星會有不同的顏色?顏色與溫度有直接關係:藍光的能量比紅光高,所以如果大家有入過廚房,就會發現越熱的火越偏藍色。同樣,恆星的顏色也代表了他們的表面溫度 (注意只是「表面」的溫度,因為我們只能看到恆星的表面發出來的光)。所以當我們看到一顆藍色的星星,就可以知道這是一顆比太陽溫度高的恆星;相反,當我們看到一顆比太陽更偏紅的星星,就知道它比太陽溫度低了。

說到這裡,究竟我們的太陽有多熱?其實太陽的表面溫度並沒有你想像的那麼熱,只有約 6000 度。在恆星的家族之中,太陽是一顆中等偏低質量的恆星。而一些藍色的星星,其表面溫度可達幾萬度,這些恆星的質量比太陽的高很多 (大約 10 – 100 倍),天文學家叫它們做「巨星」或「超巨星」。而比太陽輕的恆星,就是那些偏紅的星星,表面溫度只有大約幾千度,質量可低至約 0.08 倍太陽質量,天文學家叫它們做「矮星」。

但究竟溫度與恆星的壽命有什麼關係啊?天文學家又是如何知道恆星的壽命有多長?地球的壽命比太陽短 (這是當然的,因為太陽比地球早形成),生存在地球上的我們當然不可能有足夠長的壽命去觀察太陽的一生。天文學家不能與星星鬥長命,但我們發現到一個事實:原來恆星在其一生的不同時間,外觀都是不同的,就像人類會經歷生老病死一般。所以,計算恆星的壽命、恆星如何演化等等,就有如做人口普查!

試想像:我們是外星人,坐飛船來到地球。我們看到一種叫「人類」的動物,牠們有很多不同「形態」:有些看上去很壯碩、有些滿頭白髮、有些體型細小、有些卻很高大。我們如何知道牠們究竟是如一個物種在其生命週期的不同階段,還是根本是不同的物種呢?

如果我們把地球上不同地方的「人類」做統計,例如把每 100 萬人分開來,看看他們的身高、外觀等等參數的分布。地球上有大約 70 億人,所以我們可以做 700 次這樣的統計。結果我們會發現,這 700 次裡面的大部分,都包含著上述不同的「形態」,而且不同「形態」之間的比例有不同地方會有差別。這就告訴了我們一個非常明顯的事實:極有可能「人類」是同一個物種,而不同「形態」之間的不同比例代表了該區域的人口老化程度!

其實,天文學家就好像這些外星統計學者。天文學家就是透過觀察不同恆星的集合,看看他們的光度和溫度之間的關係。事實上,很多恆星都不像我們的太陽這麼孤單,很多恆星都是屬於雙星、三星、甚至多星系統之中。一個介乎幾個至幾十萬個恆星的多星系統,我們叫叫「星團」。很多很多個星團聚集在一起,就形成了宇宙間一個一個星系了。

650137main_pia15416b-43_full如果我們觀察這些星團、星系,數數看他們每一個裡面的恆星成員,看看它們的光度和溫度,就會發現不同的星團、星系會有不同的比例,就好像人口普查的結果。所以,天文學家就知道恆星會演化了。

當我們知道恆星會演化,下一步就是要知道它們如何演化。天體物理學家使用我們已知的物理定律,建構出各種不同的恆星模型。在愛因斯坦的時代,人類還不清楚究竟太陽是如何發光的,他們不明白為何太陽能夠持續並非常穩定地釋放出這麼巨大的能量!

那時候,物理學家還未知道有核能這種能源。有一些科學家說太陽的能量來自化學能、另一些則說太陽能源是因為向太陽落下的隕石所釋放出來的重力勢能…… 可是全部這些能量都不足以維持 50 億年:只需要簡單地計算一下,莫說是地球生命起源的大概 40 億年前了,單靠化學能、重力勢能,太陽就連發光幾千年也成問題!

最後,當然是由於人類終於發現了核能,同時結合量子力學和愛因斯坦的 E = mc^2,科學界才對恆星的能量來源有了定案:恆星之所以能夠持續釋放出這麼巨大的能量,是因為恆星上的原子核結合在一起的過程會釋出非常多的能量 (叫做核聚變反應),這些能量變成光、熱,形成一種向外的壓力,與恆星本身的重力抵消,所以恆星可以穩定地照耀億萬年之久。

情況就好像一個熱氣球。一個熱氣球就是依靠裡面的熱能使氣體膨脹,形成向外的壓力,與氣球向內的張力抵消,使之能夠保持球狀。這不是甚麼神奇的物理理論,只是小學也會學到的熱脹冷縮!

利用一些很簡單的假設,天體物理學家能夠計算出在特定的條件下,一顆恆星會如何演化。換句話說,即是我們能夠把恆星的一生案件重組,而無須親眼看見它們經歷誕生、演化、死亡!

我們發現,恆星可以根據它們的質量來區分。為方便我們的討論,略去一些細節,恆星大概可簡單分為:

  1. 極低質量恆星
  2. 低質量恆星
  3. 高質量恆星

極低質量恆星

極低質量恆星介乎 10 至 80 倍木星質量之間,即大約只有 3 千至 2 萬 4 千個地球那麼重。它們不會像我們的太陽放出這麼耀眼的光芒,而只是放出非常暗淡的紅外光,緩慢地變成棕矮星,在寒冷、黑暗無邊的宇宙中孤寂地用盡燃料。

這種星星的一生,相對低質量和高質量恆星而言,可說是毫無趣味。不過,它們的壽命非常非常非常長,可以比宇宙的年齡更長!所以,天文學家認為現在的宇宙中根本還未有任何極低質量恆星變成了棕矮星。

我們的直覺會以為,越重的恆星,等於它的核燃料越多,理應壽命越長。可是,這就好像一輛重型貨櫃車,雖然它的油箱比小型私家車大很多,但是因為它消耗燃料的速率快很多,所以更快耗盡燃料。恆星也是一樣,因為核聚變的速率以指數上升,所以只要是稍重一點點的恆星,其壽命已經比稍輕一點點的恆星短非常之多!

所以這些極低質量恆星的壽命長得這樣不可思議,就是因為它們中心的核聚變反應速率非常之低。亦因為如此,它們都是很小、很冷的恆星,其核心溫度只有不足 30 萬度,只能夠把少量的氫變成氦。

低質量恆星

PIA03149低質量恆星介乎 0.8 至 8 倍太陽質量,即大約有 26 萬至 260 萬個地球那麼重。我們的太陽就是其中一員。這類低質量恆星的壽命大概為 100 億年左右。當它們接近生命終點時,會開不斷膨脹、脈動,把自己的外殼一層又一層的拋向黑暗的太空深處,最後變成白矮星,被豔麗的「行星狀星雲」包裹著而慢慢地死去。

由於低質量恆星不夠重,其中心溫度只有大約 100 萬度,進行的只有所謂的質子-質子連鎖反應和碳氮氧循環連鎖反應。它們把氫變成氦的之餘,也能夠合成碳、氮、氧等等比較重的元素。

以我們的太陽為例。太陽現正處於一種天文學家稱為「主序星」的狀態,可以理解為恆星的壯年期。主序星能夠穩定地釋放能量,其大小、光度、溫度等等參數都非常穩定。質子-質子連鎖反應和碳循環連鎖反應所產生的向外的壓力,與其自身重力互相平衡,核心每秒鐘大約把 6 千億公斤的氫變成氦,即相當於大概每秒鐘輸出 9 萬 2 千億黃色炸藥爆炸時的能量!

幾十億年後,當太陽核心的氫 (即質子) 耗盡以後,核心裡的核反應就會停止。由於核心停止產生能量,變成所謂的量子簡併狀態,溫度大約為 1 億度。在量子簡併狀態下的物質,就由壓力比較低的簡併壓力 (degenerate pressure) 代替理想氣體壓力 (ideal gas pressure),所以就會收縮。這個狀態叫做後主序星。

由於核心收縮了,恆星的外殼也會收縮。可是,這樣一來反而令本來沒有核反應的中間殼層也能夠開始核反應。結果就是由於恆星內部收縮,令到核心溫度不跌反升,昇高了的溫度令核反應加速,加速的核反應又令溫度越升越高…… 這樣的一個循環,最終溫度會上昇到能夠令中心的氦簡併核心突然變回理想氣體狀態,發生「氦閃」,即是氦會以非常猛烈的方式進行核聚變反應!這個核反應叫做三氦核連鎖反應,比質子-質子連鎖反應和碳氮氧循環連鎖反應的效率高非常非常之多。

[質子-質子連鎖反應效率正比於溫度的 4 次方、碳氮氧循環連鎖反應效率正比於溫度的 16 次方、三氦核連鎖反應效率正比於溫度的 40 次方!]

由於核心和外層殼層輸出能量的速率不同,所以到了這個階段的恆星就會開始不斷膨脹、收縮、膨脹、收縮,天文學家稱之為 AGB 恆星。AGB 恆星的這種脈動,會把其自身的殼層一層一層好像洋蔥般向外太空拋出,大約每年可以拋走 10 萬分之一個太陽質量。恆星從主序星到 AGB 恆星的過程中會不斷變大,最後變成了 AGB 恆星的太陽會變得比地球軌道更大,所以無論到時地球上還有沒有生命存在也好 (例如因為太陽變得太大太熱,使地球離開了所謂的「適居帶」,可以參考我的另一篇科普文章《從外星生命淺談天文》),地球也必定「玩完」了。

最後,當連氦也燒完了,太陽就會變成一顆與地球差不多大小的、處於簡併狀態的星體,叫做白矮星。而其外圍,就會被先前所拋出的殼層形成的「行星狀星雲」(注意行星狀星雲的命名只是歷史原因,與行星一點關係也沒有) 包圍,失去光芒。

高質量恆星

高質量恆星的死亡方式非常華麗。它們的壽命雖然只有幾百萬至幾千萬年,但它們會變成所謂的「超新星」,以超新星爆炸的形式結束其短暫的一生 (沒錯,對於天文學家而言,幾千萬年是非常「短暫」的時間……)。

Screen Shot 2015-04-17 at 14.33.59高質量恆星泛指質量比太陽重約 10 倍或以上的恆星。它們由於太重、核心溫度太高,所以在燒完氫時不會發生氦閃,而會順利地燃燒氦。這個過程能夠一直進行下去,由氫的核反應開始,慢慢點燃氦、碳、氖、氧、矽…… 等等的重元素的核反應,直到鐵。最終就會變成一個洋蔥一樣的恆星,最外面殼層進行氫的核反應、最裡面的核心則是鐵的簡併狀態。

因為鐵是所有元素之中最穩定的,所以無論恆星如何重、核心溫度如何高,也不可能合成比鐵更加重的元素。因為要是想把鐵核強行熔合起來,就不會放出能量,反而需要從外部注入能量。所以大家可能會問:「那麼地球上、我們身體裡的一切比鐵更重的元素,究竟是從哪裡來的?」

答案就是超新星爆炸!一顆高質量恆星死亡的時候,其收縮速率非常非常之快,快到接近光速,所以在內部不同殼層之間的物質就會非常猛烈地碰撞,產生非常強烈的衝擊波,把整個恆星炸得粉碎!這個過程就是所謂的超新星爆炸了。超新星爆炸的時候,會產生極其巨大的能量,一個超新星爆炸所釋放出的能量,比一整個星系裡幾百億顆恆星放出的能量更多!

由於這麼恐怖的巨量能量,先前所合成的一切元素就會被光子打得粉碎,全部打回原形變成氫 (即質子),天文學家叫這過程做光分解。光分解完結後,這些質子的能量依然非常非常的高,以致在極短的時間內又會重新合成氦、碳、氖、氧、矽、鐵,和其他一些比鐵更重的元素。新星爆炸後,在超新星的殘骸中,可能會留下一顆中子星或者一個黑洞。而超新星爆炸所拋出的物質,就會成為下一代恆星與行星的物質。所以,天文學家卡爾.薩根 (Carl Sagan, 1934 – 1996) 的名句:「我們都是星塵」並不是比喻,而是事實。

我們都是星的兒女。我們不單止與其他人緊密連繫、與地球上所有動植物擁有共同祖先,我們與天上的星星、整個宇宙,都是密不可分的。卡爾.薩根說過:「我們是宇宙認識自己的過程。」

“We are a way for the cosmos to know itself.”

誰說科學不浪漫?

最後,希望與大家分享這一段卡爾.薩根在《宇宙:個人遊記》(Cosmos: A Personal Voyage) 裡的片段。

上面提到的各個專有名詞,例如行星狀星雲、白矮星、中子星、黑洞等等,我都未有這這篇文章裡詳細解釋,留待以後慢慢跟各位讀者討論。寫完恆星的死亡筆記,下一次我們就來討論恆星是如何誕生的吧!

* 本文封面圖片為指環星雲 (Ring Nebula),是低質量恆星死亡後遺留下來的行星狀星雲,中間的白色光點就是已經死亡的恆星變成的白矮星。Image Credit: NASA, ESA

從外星生命淺談天文

講到行星科學、生命演化的時候,常會聽到這一句話:「地球是生命的搖籃。」很多年來,天文學家都努力尋找類似地球的行星,希望找到外星生命的證據。

我們可以用什麼方法找尋外星生命呢?

Pioneer10-plaque_tilt最直接的方法,當然是飛過去看看吧。人類的人造衛星已經探訪過包括冥王星在內的所有太陽系裡的行星了,其中旅行者一號和二號更在飛出太陽系的旅程中。不過,就算是不需帶備供人類使用的維持生命的物資和裝置,這些無人探測器也得花上好幾年的時間才能飛越太陽系的行星軌道,更不用說去探訪外太陽系的行星了。

在這些探索當中,最為人熟悉的應該是火星無人探索車好奇號吧。好奇號上配備了多個科學儀器,用以探測火星的土壤裡有沒有生命。而最簡單的方法,就是看看泥土之中有沒有某些由生命製造出來的有機化合物。不過至今結果都是:還未發現火星上有生命存在。

不過,有些科學家覺得,我們可能一直問錯問題。為什麼呢?首先,為什麼我們認為生命必然會製造出好奇號的儀器找尋的那幾種化合物?當然,這是經過科學家嚴謹考慮過的,因為好奇號能夠帶上火星的儀器有限,不可能把所有可能的化合物都一一尋找。而且,人類的數據當中,只有一個星球上的生命形態可以作為參考:地球。所以,好奇號的結果,其實並非「火星沒有生命存在」,而是「火星沒有會產生某幾種類化合物的生命存在」。

已經有越來越多人估計,外星生命的形態很有可能與我們地球上熟悉的形態非常不同。當然,其實我們對地球上的生命形態也不是很熟悉的:平均每天都有新品種被發現,其中大部分都是一些我們會稱之為「奇形怪狀」的深海生物。

就算是地球上的生命形式,牠們所使用的生存方法也可以非常不同、非常極端。例如人類,我們吸取氧氣,吃富含營養的食物,透過呼吸作用把食物中的能量抽取出來,以糖的形式儲存在身體之中。而我們熟悉的植物其實已經是使用非常不同的形式來提取能量:它們能夠以光合作用,直接把陽光從光能變成化學能,吸取二氧化碳來把養份變成澱粉 (讀 DSE 生物學的同學,以上的東西你應該要比我更清楚!)。而另外一些更極端的微生物,連海底火山口的高溫也能抵抗,牠們能以火山口的高熱作為能源。

地球上的生命形式雖然非常豐富、千奇百怪、應有盡有,但地球上所有生命都是用同一種方法繁殖:遺傳因子 DNA。至現時,從未發現一種生物的細胞內沒有 DNA。所以,你也可以說,地球上的生命形式其實也很單調。可是,人類連自己的行星上的生命都並不是那樣熟悉,我們對外星生命的推測也應該不會準確到哪裡去吧。

不過事實上又是不是這樣呢?

這樣就要靠另一個尋外星生命的方法,就是用強大的天文望遠鏡去找尋其他環繞太陽系的行星。我們稱這些行星為外太陽系行星。

首先你會問:「如何看得到外太陽系行星?」問得好,其實以現時的科技,我們是直接「看」不到這些行星的。最接近我們的太陽系的一個恆星系統 (即另一個太陽系) 叫做半人馬座 α,距離地球大約 4.2 光年。

光年是距離的單位,意思是光在 1 年內能夠到達的距離。光在 1 秒鐘內已經可以環繞地球跑 7 個半圈 (大約 30 萬公里)、1 秒鐘可以從地球到達月球、大陽光在 8 分鐘內可以到達地球 (所以我們看見的太陽其實是 8 分鐘前的太陽!)、在 4 小時內到達海王星的軌道 (所以如果你坐太空船飛出去,與地球上的人通訊時的延誤會越來越大,這可不是因為 lag 機,而是因為通訊電波也只能以光速傳播)。

hubble_in_orbit1光已經這樣快了,可仍然要跑 4.2 年才能到達最接近的另一個太陽系!事實上,半人馬座 α 並非只有一顆星,而是三顆!只是因為 4.2 光年的距離太遠,看上來三顆星就重疊在一起,要用高倍率的天文望遠鏡才能夠把它們分辨開來。可想而知,要看恆星已經這樣難了,何況不會發光的行星?而且,天文學家仍然未能夠「看」到恆星,用現時最強的哈勃太空望遠鏡看半人馬座 α,也只能看到三個光點,不能夠像看我們的太陽一樣,看到一個球體。

所以我們其實是「看」不到這些外太陽系行星的。天文學家其實是利用幾種不同的方法,間接的「看」這些行星。簡單來說,可以想像:為什麼看不到這些行星?當然是因為它們的恆星太光了,而行星只能靠反射恆星的光作為光源,所以被其恆星的光芒淹蓋。所以首先我們會看恆星來推斷有沒有行星系統存在。比起恆星,行星的質量雖小,但它們的引力也會對恆星造成一些非常細微的影響。天文學家如果看到恆星軌道有週期性的擾動,就知道一定是有一些「看不見」的行星在附近了。所以至少可以得知該行星的公轉週期之類的資訊。

然後,就是如果好運,行星公轉的軌道平面剛好在與地球的視線上,那麼當行星繞到恆星前面時,一部分的光就會被行星遮住了。所以除了公轉週期,天文學家也可以計算出該行星的大小和質量等資訊。

除此以外,試想像:如果該行星有大氣層,當行星剛好繞到恆星前面,行星的邊緣剛剛接觸恆星的邊緣時,恆星的光就會穿過行星的大氣層才飛到地球。當光線穿過大氣層時,就會與大氣層裡的份子互動,會被散射、吸收等等。與未有穿過大氣層的光比較,就可以知道大氣層的化學成份及其比例了!原理就是中學化學學到的光譜學,天文學家從這些光的光譜中的發射線和吸收線辨認出各式各樣的化學份子。

天文學家對外星生命的遺傳因子、提取能量的方法等等,老老實實,都只能「靠估」。不過,當我們知道一個星球的參數,例如大小、質量、化學成份 (好運才有……)、公轉週期等等,其實已經可以作出很多合理的推測了。

根據開普勒行星運動定律,知道行星公轉週期加上恆星的質量 (可以由其他方法計算出來,我會在以後其他文章中講解) 就等於知道行星的軌道資訊比如半徑和離心率等。如果你給天文學家這些數據,還是可以對該行星會否有生命、生命生存的形式之類,有個大概的合理推測。

首先,就是行星是否位於所謂的「適居帶」。當然, 適居與否也只是人類以我們的主觀經驗去推斷,不過應該都是一個很合理的猜測:就是看看行星距離恆星是否剛剛好可以令水以液態存在。為什麼要液態水呢?水是一種頗為穩定的化學物質,它可以在生物體內擔當溶劑、潤滑、恆溫等等的作用。當然,就像前面提到,外星生命不一定使用液態水去做上述的功能 (而且也可能不需要這些功能),但以存在液態水的前提去尋找外星生命,能夠提供一定保證。所以,適居帶的大小和行星軌道就很重要了:離恆星太近,水就會蒸發掉;太遠,水就會結成冰。

其次,就是行星的軌道離心率。離心率越接近 0 (例如地球),其軌道就越接近正圓形 (正圓形是剛好等於 0)。圓形軌道有什麼好處?就是行星與恆星的距離穩定,一旦在適居帶內就不會離開,所以在一年內不會太熱也不會太冷。這樣對生命的持續演化很有幫助。試想像,如果一個行星在其公轉一週時,有時候與恆星距離很近、有時候則很遠 (即是高離心率),行星上的生命也會對如此極端的氣候感到無所適從吧。

然後,就是行星的大小與質量。行星太小,其重力就會很弱,無法留住厚實的大氣層。大氣層是非常重要的,因為不管外星生命需要大氣裡的什麼成份來生存也好,沒有大氣層就不能抵擋恆星風吹來的高速粒子和高能量幅射。地球擁有頗厚的大氣和磁場,幫助地上的生命阻擋了絕大部分這些危害生命的太陽風和宇宙射線,例如紫外線和帶電粒子等。要是沒有大氣層 (和其中非常重要的臭氧層) 和磁場照顧你們,地球上的生命,早完蛋了。

但是,太重的行星也不行。因為太重的行星,其核心就不會像地球的那麼活躍,所以磁場就會很弱;而且重力太強也會令大氣層變得太厚,陽光無法穿透,地上和海裡的生命就難以吸收能源。當然,牠們也可以從其他途徑取得能量,例如地熱。所以,科學家會推測,在這些大型行星上,如果有生命存在,很可能是在地底深處。

我們還有很多合理的想像空間。該行星如果太大,變成好像我們太陽系裡的木星、土星等的氣態行星,就可能沒有陸地,更不用說海洋了。不過,如果其表面重力、溫度等等條件適中的話,就有可能產生出微生物、甚至好像水母般的生命,牠們浮在半空之中,在其雲層之間尋找食物。有可能嗎?為何不可?也有可能由於行星比地球重,雖然有陸地,但其重力比地球強,所以上面的生命都比較笨重,因為需要較強的體質去支撐身體重量?當然,「笨重」都只是地球科學家的主觀感覺而已。

近年有研究指出,比地球大少許的行星,如果其環繞的恆星比我們的太陽暗一點點,可能更有利於生命的存續和演化。他們認為,一來這樣的恆星比我們的太陽壽命長很多 (是的,越輕越暗的恆星反而更長壽,這一點我會在以後的文章討論),生命就有更多時間慢慢演化。我們的太陽現在約 50 億歲了,天文學家計算它應該仍有足夠核燃料,繼續發光另一個 50 億年。而一顆比太陽輕少許的恆星,壽命更可達幾百億年之久!

二來,由於這樣的行星比地球大少許,其上面就可能不會像地球一樣,形成一個巨大的海洋。更可能的是,上面會是一整個大陸,在陸地上會有很多巨型的湖、河川、溪谷等等的地形。一些生物學家已經指出,這樣的地形更有利於生物多樣化。而生物多樣化的其中一個優點,就是很多生物之間互相依賴更多,食物鏈也就更穩定,較少機會出現像地球上的「一種生物滅絕引起的滅絕連鎖反應」。換句話說,即是該行星上的生物系統不會像地球的那麼脆弱。而種種這些優點,就更有利智慧生命的發展了。

sagan_contact550

長久以來,很多人都希望找到外星生命。可能,我們在宇宙之中雖小如微塵,但我們的心靈卻嚮往無垠的宇宙,渴望找到其他文明,一起分擔我們的孤單。

說到這裡,天文學家其實早已計算過,在宇宙中有可能存在多少外星文明。這是一條非常簡單的公式,叫做德雷克公式 (Drake equation)。簡單地說,就是計算行星會發展出生命的機率、生命能夠順利演化的機率、能夠成功演化出智慧生命的機率等等,再把這些機率乘以宇宙之中的行星數量,就是智慧文明的數量了。當然,沒有人知道上述每一個數字的真正數值。不同的人,使用不同的方法去估計這些數字,代入公式後得出的數目都有所不同。但,就算你用非常非常保守的數字去計算,也不難得出「我們並不孤單」的結論。

上面的片段,是我非常尊敬的天文學家卡爾.薩根 (Carl Sagan, 1934 – 1996),在他的電視紀錄片《宇宙:個人遊記》(Cosmos: A Personal Voyage) 之中,關於人類尋找外星生命的一段說話。內容理性、又不失感情,我很喜歡,所以與各位分享。

我還有非常多的天文學可以和讀者分享。下一次,我們就來嘗試看看,一顆恆星的一生究竟是如何演化、而太陽的演化又是如何影響著地球上的生命。

延伸閱讀:

科普:行星.生命.演化

論人、論學問

我們不應該用教育背景或專業去標籤任何人。要知道,任何一個尊重學問的人,最基本的就是對人對事的態度:誠實。很多時候,我們必需要承認,我們對 comfort zone 以外的事物,理解真的並不多。

我會尊重其他人的專業,特別是我理解不深的行業,我往往非常欣賞。為什麼?因為在他們的角度看過去,他們對這世界的了解比我多啊。為什麼我們要看不起或者去批判其他人的專業?

且讓我引用一些人的說話:

古希臘哲學家阿里士多德 (Aristotle) 說:「把是說成非,或把非說成是,叫做錯;把是說成是,或把非說成非,叫做對。」

“To say of what is that it is not, or of what is not that it is, is false, while to say what is that it is, and of what is not that it is not, is true.”

文學家梭羅 (David Thoreau) 說:「甚於愛、金錢、諾言、名望、公平,給我真相。」

“Rather than love, than money, than faith, than fame, than fairness, give me truth.”

物理學家費曼 (Richard Feynman) 說:「對於一項成功的技術,真相必須凌駕於公共關係,因為大自然是不能被欺騙的。」

“For a successful technology, reality must take precedence than public relation, for Nature cannot be fooled.”

這些不同背景的人,他們所寫的文字之間,你覺得有共通點嗎?

有,就是誠實。無論你讀的是文學或者科學、你喜愛的是音樂或者詩詞、你做的是工程還是電腦,只有一件事你是必須要做的:對事實,你要誠實。

誠實,也就是學問的基石、學問的價值、學問的精神。

也請讓我以我所熟悉的專業去做例子:

科學的一個重要價值,是任何科學理論都可以被新的觀察數據修正、替代。在科學中,沒有「權威」這回事。一個好的科學理論,至少應該具有下列特點:

  • 它可以使我們根據理論作出預言,用最少與最簡單的假設解釋最多的實驗與觀測數據;
  • 它可以被事實所證偽。換句話說,它可以被事實證明為錯誤的。

歷史告訴我們,就算是一向不相信「權威」的愛因斯坦,也有因為自我思想封閉而犯下錯誤的時候。實際上,愛因斯坦常常犯錯。他曾說過:「上天為了懲罰我藐視權威,而使我自己也成為了一位權威!」

科學之所以可信,是因為科學不會因為提出理論的人的地位而去判斷理論重要與否。當然,科學家也是人,歷史上科學被「權威」壟斷也時有發生。不過,到最後事實還是會戰勝偏見,就如同伽俐略所說:「不管怎樣,地球還是在動。」

科學一向給人的感覺是對人類自身的存在重視不足,我認為這是大眾對科學及科學家的誤解。古代的人之所以會對萬物產生好奇心,主要原因之一正是因為我們希望認識自己:

「我們是誰?」

「為何我們會在這裡?」

「我們是由甚麼構成的?」

這些都是歷代科學家、哲學家所關心的問題。

一直到現在,我們都還在尋求答案。一些問題的形式或許已經改變,但我們仍能感受到「人」在這些提問背後代表的價值。

我相信,人文和理性本為一體。我亦相信當我們不理解其他人所理解的學問時,我們要做的,是去學習,不是去批判。學問,其實就是出於對世界的好奇心,可是很多人卻似乎忘記了這一點。

封面圖片是費曼在玩他的非洲鼓。費曼一生都對世界保持好奇的心:他是一個物理學家,卻花很多時間去學畫畫、打鼓。他曾公開表演非洲鼓、辦過自己的個人畫展、試圖破解古瑪雅文明的文字、自學開鎖,更被專業鎖匠封為「神人」、做生物學和心理學研究等等。

世上的學問多到學不完,我只希望跟費曼一樣,多花心思去了解、學習、欣賞。

照亮相對論的光 (下)

這是相對論與電磁學系列的暫時最後一篇文章。經過《你也能懂相對論》《光的祕密》《照亮相對論的光 (上) 》的討論,最後我們終於可以來討論電磁學與相對論的關係了。我現在要告訴你:「磁」只是「電」的相對論結果!

物理學家總是喜歡簡化事物。我們發現,只要用電現象放在相對論的時空中,自然就會得到磁現象了!這是多麼的深刻,又是多麼的美麗!

在入正題之前,我想各位明白一個道理:不懂數學絕對沒有問題!不懂一個學科絕對不是你的錯。「學問」裡最重要的除了「學習」其實就是「發問」。不論你是什麼身分,不懂就老實的說不懂,然後去學習和發問。我希望我的文章能夠刺激各位讀者去思考,這就是學問的精神,也是科學精神。

有一次,一個記者問愛因斯坦聲音的速度是多少,愛因斯坦回答說:「這些能夠在書中找到的資料並不存在於我的腦海之中。…… 學校教育的價值並非去學習很多事實,而是去訓練腦袋如何思考。」

“[I do not] carry such information in my mind since it is readily available in books. …The value of a college education is not the learning of many facts but the training of the mind to think.”

幫助數學背景不高的讀者理解科學,正正就是我寫科普的目的。希望所有人都能夠感受到自然定律的深刻和美麗,和抽象的數學在演繹科學概念時的重要性。比起理解數學推導過程更重要的,是了解科學背後的求真精神。

calvin-father-on-relativity

若讀者沒有中學物理背景,我現在嘗試用文字解釋下面的數學:如果一條電線內有電流 I 在流動,就會產生一個磁場,其大小為

Screen Shot 2015-04-01 at 15.25.50 (1)

其中 r 為測量磁場的點與電線中心的距離。

在下面的數學,我將會假設我們不知道世界上有磁場這個東西,然後證明當使用相對論的洛倫茲公式在電力身上時,會發現有一個並非電力的、額外的力存在。神奇的是,我們會看到這個額外的力的大小會剛好等於 (1),於是就證明了「磁」只是「電」的相對論結果!

在做 [沉悶的……] 數學證明之前,先來讓我們重溫電磁學的歷史發展吧!

GodfreyKneller-IsaacNewton-1689在 17 世紀,因為爆發疫情,大學休假,所以牛頓暫時回到家鄉。他在家鄉的這段時間裡,獨自完成非常多的科學研究,堪稱牛頓的奇蹟年。除了他那個家傳戶曉的蘋果樹故事外,他更發現了運動三定律、發明了微積分、從重力方程推導出開普勒的行星軌道方程,當然還有他那著名的稜境分光實驗。

蘋果樹的故事很可能是假的、而且微積分的功勞也不能全歸於他:萊布尼茲 (Gottfried Wilhelm Leibniz) 在同一時間獨立地發明了微積分,而且我們現在使用的微積分符號都是萊布尼茲的版本。但牛頓對大自然的深刻洞見是千真萬確的,尤其在最多人忽略的光學實驗之中,對後世的影響絕對不比發現萬有引力為少。

光,是人類接觸、感受、領悟自然的最直接途徑。牛頓發現了白光與色彩的關係,打開了日後光學研究的大門;當時的折射式望遠鏡因為鏡片打磨困難,很難加大倍率,他發明了牛頓式反射望遠鏡,這一設計沿用至今;他發明的微積分高等應用技巧「變分法」在以後被其他科學家用來解釋光的折射現象。所以,光的科學故事可以說是由牛頓開始的。

Ørsted故事跳到 19 世紀,轉眼百多年。人類對光學、電學以及磁學的研究已經非常多年,研究數據也非常豐富。可是一直要到奧斯特 (Hans Christian Ørsted) 意外地發現電流可以影響指南針,人類才首次發現電與磁是有關係的。大自然其實一直都在指示我們,可是很多時候我們卻視而不見。

奧斯特並沒有對這些發現視而不見。他雖然沒有用數學去描述這些現象,但他知道電流磁效應是一個非常重要的科學發現,他對此做了很多實驗,為科學界提供了非常豐厚的實驗數據。為了紀念他證明電流會產生磁場,在天文界使用的 CGS 單位之中的磁感應單位 oersted 就是以他的名字命名。

Andre-marie-ampere2用數學去精確描述奧斯特發現的人,是安培 (André-Marie Ampère)。現在,我們可以用安培定律準確地描述由電流產生的磁場,其實上面的第 (1) 式就是來自安培定律,不過我把證明留給有興趣的讀者。

奧斯特的發現與安培的工作很大程度幫助了人類理解「能量」這一概念。在當時的科學界,能量這個概念仍然相當模糊。很多科學家認為世上有很多不同種類的能量,但奧斯特與安培的研究結果卻顯示電能是可以轉化成磁能的,因此促進了能量概念的統一。其中最重要的、亦最廣為人知的能量統一研究,當然是愛因斯坦的 E=mc^2 了。而因為他的研究貢獻,安培的名字也永垂千古,人類現在以他的名字命名電流的單位 ampere。

SS-faraday法拉第是我最尊敬的科學家之一。他對科學的求真態度和對人的謙虛,都非常值得我們每一個人去學習。19 世紀的英國是個階級分明的社會。法拉第因為家境貧窮,沒有錢讀書,要去書店做書本釘裝學徒為生和養家。可是他並沒有因此氣餒,因為這樣反而令他有機會接觸不同的書籍,所以他每天一邊釘裝書本,一邊讀書。他最有興趣的是科學,他大部分的科學知識都是這樣不屈不朽地自學的。

當時的倫敦聖誕科學講座由戴維主持,喜愛科學的法拉第當然不會錯過,跑去做聽眾。當其他人都在看戴維表演的時候,法拉第卻認真地做筆記,回家可以溫習。他更把筆記整理好,再自行釘裝,送了給戴維。戴維因為看到他三番四次的誠意,因此聘請他做研究助理。因為這樣,大自然把光照到人類的科學界,最終使法拉第發現了電磁感生效應,即我們在中學會學到的「改變的磁場能夠感生電流」,這就是著名的法拉第定律。

Sir_Humphry_Davy,_Bt_by_Thomas_Phillips雖然戴維曾經有一段時間看不起出身低微的法拉第,並因為妒忌法拉第而用自己的權力打壓他。有傳戴維在臨終前,也終於說出作為科學家的驕傲的說話:「我這一生最大的發現,是發現了法拉第。」無論如何,法拉第始終尊敬這個給他機會做科學研究的老師,一生都非常尊敬他。在戴維死後,倫敦聖誕科學講座一直由法拉第主講,因為法拉第希望他的講座能夠吸引和啟發更多像他當年一樣的小伙子,所以他的講座所做的實驗都是有趣味和有啟發性的前沿發現,深受小朋友的喜愛。

James-clerk-maxwell3然後,就是我們在前文提過的馬克士威發現電磁方程式、赫茲證明電磁波真實存在等等。最後出場的是愛因斯坦。很多人 (包括我以前) 都以為愛因斯坦發現狹義相對論是因為力學的原因,其實不然。事實上,真正吸引愛因斯坦思考相對論的,是上回討論的電磁實驗。以下,我嘗試用最少程度的數學,為讀者證明:我們日常接觸的電磁鐵,其實就是相對論的一個活生生的實證。

Screen Shot 2015-04-01 at 15.25.54 Screen Shot 2015-04-01 at 15.26.03

好了,現在讓我們來動手做數學證明:考慮一條電線,見圖 (1)。電線裡有一連串的正電荷正以速率 向右移動。想像電荷之間是如此的接近,以致可被想像成連續的正電荷密度 +λ。想像有負電荷密度 λ 以同樣的速率 向左移動。所以我們就有電流 I = 2λv。現在,有一個點電荷 在電線旁邊以速度 u <平行電線向右運動。由於圖中正負電荷密度相等,因此沒有任何電力會作用於 身上。我們稱這個座標系為 S

現在考慮另一個以速率 u 向右移動的座標系 S’,見圖 (2)。因為 S’ 與電荷 q 同向一方向運動而且速率一樣,所以在 S’ 裡的觀測者會看到電荷 q 靜止不動。根據愛因斯坦速度相加法則 (參考《你也能懂相對論》之中的第 (5) 式),正電荷和負電荷在座標系 S’ 中的速率分別為

Screen Shot 2015-04-01 at 14.47.35 (2)

Screen Shot 2015-04-01 at 14.47.40 (3)

因為

Screen Shot 2015-04-01 at 17.31.37 (4)

所以負電荷的速率比正電荷的速率高。換句話說,負電荷的洛倫茲收縮程度會比正電荷的嚴重,因此在座標系 S’ 中觀察時,這條電線是帶負電的!

現在我們來搞清楚各個坐標系中的電荷密度的關係。根據洛倫茲收縮公式,設 λ0 為靜止正電荷的電荷密度。注意,λ0 與 +λ 是不同的!+λ 是正電荷在座標系 S 裡的電荷密度 (正電荷不是靜止),而 λ0 是正電荷靜止時的電荷密度。所以,當我們在就座標系 S’ 中觀察時,就有

Screen Shot 2015-04-01 at 14.54.45 (5)

Screen Shot 2015-04-01 at 14.54.49 (6)

當我們在就座標系 S 中觀察時,就有

Screen Shot 2015-04-01 at 14.54.53 (7)

把 (2) 和 (3) 式分別代入 (5) 和 (6) 式,就得到

Screen Shot 2015-04-01 at 14.54.57 (8)

Screen Shot 2015-04-01 at 14.55.02 (9)

所以,在就座標系 S’ 中觀察時,總電荷密度就等於

Screen Shot 2015-04-01 at 14.58.20 (10)

所以,我們發現在不同座標系中觀察時,總電荷密度會有所不同。

由於在座標系 S’ 中觀察時總電荷密度不是零,根據高斯定律,會有電場

Screen Shot 2015-04-01 at 15.02.47 (11)

因此,座標系 S’ 之中,電荷 q 所受的電力為

Screen Shot 2015-04-01 at 15.00.08 (12)

問題來了:如果在坐標系 S’  中電荷 q 會受力的話,在坐標系 S 中它也必定會受力,因為物理定律是唯一的!這個力的大小是

Screen Shot 2015-04-01 at 15.08.14 (13)

(關於力的變換公式,我在此略去,有興趣的讀者可以自行參考相對論教科書)

由於討論開始時我們假設只知道電力的存在,因此在坐標系 S 中必定存在另外一種力,這種力是由電力及相對論性效應導致的!這是甚麼力?當然就是磁力了。要看到這點,只需要把光速

Screen Shot 2015-04-01 at 15.08.18 (14)

(參考《光的祕密》第 (14) 式)

代入 (12) 式,我們就得到

Screen Shot 2015-04-01 at 15.08.22 (15)

但這是甚麼?還認得括號中的是甚麼嗎?對了,括號中的是一條電線裡的電流所產生的磁場,即是第 (1) 式!

如果讀者覺得以上數學和文字很悶,這裡有一段 YouTube 影片講解同樣的東西 (別罵我為什麼不早說,早說了你還會讀我這篇文章嗎?)

當然,關於相對論還有更多有趣的題目,以後可以和各位讀者討論。在這一連四篇關於相對論、光、電磁學等等的文章之中,希望大家也和我一樣,在領略大自然的深刻之餘,得到一點點的樂趣。

有得揀,你揀叮噹定叮叮?

首先自爆年齡,我心中,叮噹永遠都叫做叮噹、叮叮永遠都叫做叮叮。

不時都會聽人說,我們其實都是大雄,在世界上、茫茫人海,都想尋找到自己的一位叮噹。

當年,我還很小,大概五六歲吧。有一天,我爸爸下班後買了一本《叮噹》給我。我當時根本不知道誰是「叮噹」。我記得,那本是《叮噹》第五期,封面上有五個叮噹,是書中最後一個故事「五個叮噹」的插畫。

從此,我愛上叮噹。以後的每一期《叮噹》,無論單行本、大長篇、其他一些系列例如環保、通識、科學小系列,我都不會放過。我叫它們做「叮噹書」。

為什麼叮噹這麼受歡迎?小朋友會答「因為我喜歡叮噹的法寶道具!」大朋友會答「因為叮噹是我們的集體回憶,因為我們都是大雄,都想找到一個叮噹。」

我覺得,這些都不是真正令我們愛上《叮噹》的原因。記得叮噹的妹妹叮叮嗎?她比她的哥哥叮噹聰明、她不是次貨 (叮噹是次貨所以很便宜小雄一家才買得起)、很多次叮噹有危險時都是叮叮出手相救。

在叮噹大長篇《魔界大冒險》,叮噹和大雄被妖怪追趕,他們坐時光機逃到使用「如果電話亭」把科學世界變成魔法世界之前的時間,打算阻止過去的自己。可是那妖怪竟然飛過時光隧道,在過去把他們變成了石頭。這又是一個時空交錯的故事,相信很多人和我一樣都是因為《叮噹》而對平行時空這些科幻概念著迷的吧。

最後,是叮叮在未來世界感覺到不妥 (女人第六感的超越時空機械貓版本?!) 所以回到過去,用「時間布」救了他們。然後,叮叮和叮噹、大雄等人再次潛入魔王的城堡,因為有叮叮的幫助,所以比依靠叮噹的上一次順利非常多。最後,在宇宙空間,也是靠叮叮用「放大縮小電筒」把大雄投出的最後一支銀標放大,把魔王的心臟消滅。魔法世界和現實科學世界一起回復正常,都是叮叮的功勞。

可是,為什麼不乾脆把叮叮變成主角呢?為什麼我們又不會像喜歡叮噹那樣喜歡叮叮?

我們會將自己想像成大雄。我們在困難、失落、傷心的時候,我們都希望有個叮噹拿出神奇的法寶、不可思義的道具:如果電話亭、隨意門、時光機、竹蜻蜓、記憶麵包、百寶袋…… 可是,現實沒有叮噹,我們的家也許連放一張書檯的空間也沒有,叮噹更不會從我們的抽屜裡跑出來,令我們得到幸福。

我們都想要幸福。沒有叮噹,就只能夠靠自己。讀書成績不夠好嗎?卻沒有記憶麵包,只能靠自己努力溫習;想去旅行嗎?卻沒有隨意門,只能靠自己努力儲蓄;想球技進步嗎?卻沒有如果電話亭,只能自己帶著足球落街場練習;想改變過去嗎?卻沒有時光機,我們只可以改變未來、不要重蹈覆轍。

叮噹雖然有很多神奇的法寶,可是在漫畫中的危急關頭,他卻經常用錯道具、適得其反。拿著漫畫書看的我們,往往認為這只是很簡單的事啊。我們卻沒有想到,其實如果換轉我們是叮噹,也可能會跟他一樣。不是,其實我們已經跟他一樣了。我們發現,自己努力的結果往往都不完美:明明已經努力過了,考試仍然不合格嗎?明明已經努力過了,球技仍然不如他人嗎?明明已經努力過了,仍然買不起樓嗎?明明已經努力過了,仍然挽回不到那個他/她嗎?

沒有人會給我們百寶袋、神奇的法寶和道具。可是,其實在不知不覺間,我們卻為自己造出了只屬於我們自己的百寶袋:我們發現了最適合自己的讀書方法、我們自己儲蓄、我們自己練波、我們從自己的經歷之中學習。雖然結果都不盡如人意,但我們都習慣了,這就是現實。這一切,都變成了裝載於我們腦海中的神奇法寶,幫助我們看似堅強、但卻脆弱的心靈,一步一步支持我們直到今天。

有一次,大雄和叮噹吵架,吵架之中大雄說覺得叮叮比叮噹好多了,於是小雄就說,不如叮噹和叮叮互換工作,由叮叮去照顧大雄。結果,叮叮把大雄照顧得非常好,看上去叮叮的確比叮噹做得更好。可是,或許就是因為叮叮太完美了,或許大雄始終掛念那個和他差不多、經常出錯的叮噹。最終,兩人和好如初 (仍舊每天吵架)。

大雄寧願要一個不完美的叮噹,因為在叮噹裡,他看到了自己。我們在大雄裡也看到了自己。但其實,在我們潛意識之中,在叮噹裡,我們更加看到了自己。

在現實中,一切一切的不完美,構成了我們寶貴的經歷,一一放在我們心中深處的百寶袋裡。我們在困難的時候是大雄,但我們卻忽略了:每次我們重新振作的時候,其實,我們都是自己的叮噹。

我揀叮噹,你呢?

照亮相對論的光 (上)

我在《光的祕密》文中討論了電磁學的發展,以及馬克士威方程如何預言電磁波的存在。但是在 19 世紀末的物理學界仍然存在好幾片烏雲,而且正不斷擴大。其中一片就是牛頓力學與電磁學的結論互相抵觸。

相對性原理 (principle of relativity) 其實並非愛因斯坦所發現的。人類似乎很早就知道 (卻沒有去追問為甚麼,彷彿一切都是必然的) 我們能在行駛中的船上以在地上一樣的力度和角度打桌球、廚師能以在地上一樣的技巧將薄餅拋來拋去、而你也能夠在正以時速 900 公里飛行的飛機上從容不迫地與在地面上一樣做相同的動作。看來,我們習慣所有東西都是理所當然的。懷海德 (Alfred North Whitehead) 說

“It requires a very unusual mind to undertake the analysis of the obvious.”

伽利略是個 unusual mind。他發現了鐘擺等時定律、也發現了物質具有慣性 (inertia),即沒有被施外力的物質會一直保特其運動速度,即是以同樣的速率與方向繼續運動。所以相對性原理其實是伽利略發現的。

牛頓也知道伽利略發現了這個超越古希臘的知識。由觀察蘋果和月球的運動得出萬有引力定律的牛頓,肯定也是個 unusual mind。這是發生在 17 世紀的故事,距公元 5 世紀愛奧尼亞文明的衰亡足足遲了 1200 多年。我經常想像,如果阿基米德沒有被羅馬士兵所殺,也許人類文明會比現在進步上千年。

magic

回到主題。究竟描述光的電磁學與描述時空的相對論有何關係?關係在於電磁波動方程:

Screen Shot 2015-03-29 at 16.25.49 Screen Shot 2015-03-29 at 16.25.52

其中 E 及 B 分別為電場及磁場,它們頭上的箭咀表示它們是三維向量。由上述公式可知電磁波的存在,其速度約為每秒 30 萬公里。究竟秒速 30 萬公里有甚麼問題呢?這個數字本身沒有問題,問題在於這一數字是個常數,即其數值不會改變。在數學中,我們都清楚知道常數的數學規則。但在現實中,「光速是個常數」究竟是甚麼意思?「不會改變」究竟是指何種情況之下不會改變?愛因斯坦的答案是:在宇宙間任何時間、地點、運動狀態下都不會改變!

想像小明在火車車廂中以速度 u 跑步,而火車正以速度 v 行駛,所以在月台上的人看到小明的速度就應該是 u + v 吧!接下在,我們想像正在跑步的不是小明,而是一道以速度 c 前進的光線。請問在月台上的人看到的這道光線正在以甚麼速度行進呢?是 c + v 嗎?不!答案是 c。無論這道光線向著哪個方向發射,其速度都是 c,不多也不少。

你可能會問:「這怎麼可能!如果我以光速向著一道光線跑去,我不是會看到兩倍光速嗎?」不,結果仍然是 c。在這場牛頓對馬克士威的比賽中,大自然選擇了馬克士威。馬克士威的電磁理論在宏觀的大尺度事物上是正確的,它與愛因斯坦的相對論相容,但與牛頓的絕對時間、空間概念相悖。大自然告訴我們,速度不是 1 + 1 = 2。在《你也能懂相對論》一文中,我們已經討論過狹義相對論,故此不再重複。相對性原理說明,宇宙間沒有絕對速度,可被測量的只有相對速度。即是說,月台上的人可以說是火車在運動,火車上的人也可以說是月台在運動,兩者的說法都一樣正確。

現在我想以電磁學的角度去討論相對論。一個運動中的帶電粒子會同時產生電場與磁場,而靜止中的帶電粒子則只會產生電場,沒有磁場。問題來了:哪究竟這粒子有沒有產生磁場?如果一個觀測者 A 相對於該粒子為靜止,他將不會測量到任何磁場。但如果有另一個觀測者 B 相對觀測者 A 運動,他將會測量到一個磁場,因為觀測者 B 相對該粒子也在運動。可是,物理現象必須是唯一的,因為同一個事件不可能得出兩個不同的結論。

我們來進一步分析這個問題。假設你有一個任意形狀的線圈和一塊可以改變磁場強度的電磁鐵。我們試試把電磁鐵穿過線圈,你可以做三個實驗:

  1. 固定電磁鐵,移動線圈;
  2. 固定線圈,移動電磁鐵;
  3. 固定線圈及電磁鐵,改變磁場強度。

如果我們真的做這三個實驗,會得到什麼結果呢?由於時間關係,我把結果告訴你:三個實驗都發現有電流通過線圈,其數值都完全一樣!

Screen Shot 2015-03-29 at 21.16.02

法拉第做了這些實驗。在實驗 (1) 裡,產生電流的原因是磁力。根據洛倫茲力方程式 (Lorentz force equation),由於沒有電場存在,作用於線圈內每單位電荷的力就是

Screen Shot 2015-03-29 at 21.17.49 (1)

其中 u 為電荷的速度。由於磁通量 (magnetic flux) 是

Screen Shot 2015-03-29 at 21.18.21 (2)

參考上圖,線圈由時間 t 的位置移動到時間 t + dt 的位置,帶狀範圍就是 [並非由硬幣導致……] 磁通量的改變,其量為

Screen Shot 2015-03-29 at 21.18.38 (3)

考慮圖中點 P,經過了 dt 的時間後它移動至 P’ 的位置。如果 v 為電線段的速度,u 為電荷在電線內的速度,所以 w = v + u 就是電荷在點 P 的速度。由於每一格帶狀區域的面積就是 dA = (v x dl) dt代入 (3) 式就得到

Screen Shot 2015-03-29 at 21.18.44 (4)

因為 u 平行 dl 於,所以我們就有

Screen Shot 2015-03-29 at 21.18.47 (5)

現在利用恆等式

Screen Shot 2015-03-29 at 21.18.54 (6)

可以把 (5) 式改寫成

Screen Shot 2015-03-29 at 21.18.51 (7)

由於 w 就是電荷在點 的速度,所以 (w x B) 就是電荷所受的磁力,根據 (1) 式我們就有

Screen Shot 2015-03-29 at 21.18.59 (8)

最後,根據電動勢的定義

Screen Shot 2015-03-29 at 21.19.02 (9)

我們就得到

Screen Shot 2015-03-29 at 21.19.06 (10)

亦即我們在中學學過的「電動勢等於磁通量的負改變率」

另一方面,我們也可以試試來考慮實驗 (2) 和 (3),看看會得到什麼有趣的結果。

首先,我們知道改變中的磁場能夠感生一個電場。實驗 (2) 和 (3) 中的電動勢均由此電場產生,其強度與第 (10) 式中的一樣:

Screen Shot 2015-03-29 at 21.25.27 (11)

現在使用第 (2) 式,我們就會得到

Screen Shot 2015-03-29 at 21.25.31 (12)

這就是積分版本的法拉第定律,對它作旋度 (curl) 就可得到在《光的祕密》一文中的微分版本法拉第定律。

在實驗 (2) 和 (3) 中,法拉第發現線圈內的電動勢的數值,竟然恰巧等於實驗 (1) 中所得的數值!你可能會說:「當然!根據相對論,重要的只是線圈和電磁鐵的相對運動,所以實驗 (1) 與實驗 (2) 和 (3) 所得的結果必然一樣。」可是,當年的法拉第並不懂得相對論,愛因斯坦也還未出世。而且這也不足以解釋實驗 (3) 的結果為何也是一樣。由電磁學的角度看,這純粹是個漂亮的巧合。法拉第也有個 unusual mind,他的直覺告訴他,「電」與「磁」應該是相同的物理現象。不過他一直要等到馬克士威發現他的馬克士威方程式,法拉第的假設才被證明。

由這些討論我們可以得出甚麼結論?基於完全不同的物理過程,實驗 (1) 與實驗 (2) 和 (3) 得到相同的電動勢:實驗 (1) 中產生電動勢的是磁場,而實驗 (2) 及 (3) 中產生電動勢的卻是改變中的磁場所感生的電場。嚴格來說,實驗 (1) 的結果並非法拉第定律,因為法拉弟定律所指的是由磁場所感生的電場。這個分別看似無聊,但是正正因為這一分別,令愛因斯坦得到靈感,最終發現狹義相對論。愛因斯坦在他的論文中指出,這個事實顯示在電動力學與力學中,根本不存在絕對靜止的概念。

電動力學 (electrodynamics) 就是研究電磁現象與粒子的相互作用的物理學分支。與牛頓力學不同,由馬克士威方程式出發的電動力學與相對論相容。當時大部分科學家都認為,牛頓力學在物理學界已經屹立了幾百年,而馬克士威寫下他的方程式只有區區幾十年,所以馬克士威一定是錯的。但愛因斯坦並沒有因為理論誕生的先後次序而否定馬克士威方程式。

歷史證明愛因斯坦又是另一個 unusual mind。在科學裡,無論一個理論的歷史有多悠久、它的數學有多嚴謹、提出它的人有多著名,只要它不符合觀察結果,它就是錯的。科學裡只有事實,沒有權威。

法拉第曾用磁鐵感生出一個電流,使浸在水銀中的電線迴轉運動。這其實就是現代發電機與摩打的原型,法拉第在實驗中造出世上第一個發電機和摩打,然而他並不知道在百多年後的今天,他的研究對世界造成多大的貢獻。

有一年,法拉第在他著名的倫敦聖誕科學講座示範他的電磁實驗。實驗完結後,觀眾之中有一位女士問他:「法拉第先生,請問這樣做有什麼用途?」

法拉第很禮貌地回答:「我的女士,請問一個初生嬰兒有什麼用途呢?」

“Mr. Faraday, of what use is this?”

“Madam, of what use is a newborn baby?”

就像在《光的祕密》提到的赫茲一樣,法拉第不知道他的偉大科學貢獻對後世會有什麼影響。每一個新的科學發現都像一個新生嬰孩,在當下我們可能不會看到即時用途。但經過時間,每一個科學發現都有無限可能性、每一個科學發現都同樣重要。這一種看待科學以及其他所有創新概念的態度,我們應該向法拉第好好學習。

下回,我們將會看看如何用相對論證明「電」與「磁」其實是相同的物理現象。

光的祕密

霍金當年寫《時間簡史》時,出版社警告他:書內每多一條公式,銷售量便會減半。

為何我仍然會在科普裡寫數學公式?這是因為我希望即使讀者未能理解推導過程的每一個步驟,也能夠體會大自然確確實實是物理與數學的美麗結合。越基本的科學所涉及的數學就越複雜,所以有人說「物理是科學之父、數學是科學之母」。終究科學並不是寫作,科學必須經過嚴謹論證,不可能每一次都用純文字去解釋。

4633000725_8817dcedb9_b聖經上寫道:「神說:『要有光!』就有了光。」如果宇宙真的存在一個創造者,我不相信這會是祂說過的話。天文學家使用越來越大型亦越來越精密的天文望遠鏡收集來自宇宙深處的光,希望得知宇宙的奧秘。今次我要討論一個問題,其實「光」是甚麼?

我們一般說的光,多指可見光 (visible light),波長約由 400 納米至 700 納米。整個電磁波譜由射電 (即 radio wave) 到伽瑪射線 (gamma-ray),可見光只佔其中非常少的部分。為甚麼我們會叫它們做「電磁」波呢?光又為何會是電磁波?

在日常經驗裡,「電」與「磁」看上去是兩種不同的物理現象。事實上,「電」與「磁」是同一個硬幣的兩面,本為一體,只是其中的關聯不容易被察覺而已。

1665 年,牛頓用三稜鏡把白光分解為七彩的光。他把另一個三稜鏡倒轉放在彩光後面,發現七色能夠結合變回白光。他認為光是一種粒子,其他一些人則認為光是一種波動。

1806 年,奧斯特 (Hans Christian Ørsted) 發現了電流磁效應。有一天,他在課堂上做電學實驗的示範,察覺到電線旁的指南針會受電流影響,從而發現了電流可以產生磁場。這就開啟了物理學的一道大門:「電」與「磁」兩種看來互不相干的物理現象之間的關聯被發現了。

1831 年,法拉第 (Michael Faraday) 發現了磁場的改變能夠產生電流,原來電能生磁、磁亦能生電。這些發現暗示了「電」與「磁」有可能只是同一種物理現象的兩個表現。

在 19 世紀,科學界已經累積了非常多的電磁現象實驗數據,但卻未有人能夠解釋所有現象。終於在 1865 年,馬克士威 (James Clerk Maxwell) 成功將所有理論與實驗數據整理好,他只用幾條方程式就解釋了所有電磁現象,從此電學與磁學統一為電磁學,成為一個完整的電磁理論。這是現代物理史上第二次將兩個看上來不同的現象統一起來;第一次統一是牛頓用運動三定律和萬有引力定律把力學和行星運動結合起來,就是我們學過的經典力學。

讀者若有中學程度的物理底,該會聽過庫倫定律 (Coulomb’s Law) 與法拉第定律 (Faraday’s Law) 等等之電磁學定理。這些定律全被包含在馬克士威方程式 (Maxwell’s Equations) 當中,所有的電磁現象都可以從這四個公式推導出來:

Screen Shot 2015-03-29 at 16.14.35

其中 EB 分別為電場 (electric field) 及磁場 (magnetic field)、ρ 是電量密度 (charge density)、J 是電流密度 (current density),E與 上面的箭咀表示它們是三維向量。

現在嘗試由 (1) 式推導出庫倫定律。把 (1) 式作體積積分,就會得到

Screen Shot 2015-03-29 at 16.16.45 (5)

左邊使用高斯散度定理 (Gauss’s divergence theorem),右邊使積分電量密度寫成總電量 Q,就有

Screen Shot 2015-03-29 at 16.16.51 (6)

考慮球狀對稱,左邊就只剩下沿半徑向外的電場分量,所以變成純量 EdA 的積分,故此就得到電場

Screen Shot 2015-03-29 at 16.18.57 (7)

這就是讀者熟悉的庫倫定律。

其實當年馬克士威的方程式組包含了二十個公式,以上只有四個公式的現代版本是由黑維塞 (Oliver Heaviside) 與吉布斯 (Josiah Willard Gibbs) 於 1884 年使用向量形式重新表達的。

說到這裡,究竟電磁學與光有甚麼關係?早在 1676 年,奧勒.羅默 (Ole Rømer) 聰明地利用觀測所得之木星衛星掩食時間與理論上的數值比較,從而計算出光從木星飛到地球的時間,是有史以來首次測量到光速的準確數值:約為秒速 30 萬公里。

馬克士威發現,使用 (1) 至 (4) 式可以推導出數學之中用來描述波動的波動方程,因此他預言電磁波的存在。問題在於如何得知電磁波與光是同一種物理現象?以下我將推導電磁波動公式,答案就藏在結果之中。

考慮 (2) 式,把它作旋度 (curl),並使用恆等式

Screen Shot 2015-03-29 at 16.23.45 (8)

就得到

Screen Shot 2015-03-29 at 16.23.50 (9)

由於旋度算子與對時間的偏微分算子互相獨立,作用次序可以互換。再將 (1) 式代入 (9) 式左邊,將 (4) 式代入右邊,當我們考慮真空狀態,電量密度及電流密度均為零,就得到

Screen Shot 2015-03-29 at 16.23.54 (10)

(10) 式可寫成

Screen Shot 2015-03-29 at 16.25.49 (11)

同樣地,磁場也可以寫成

Screen Shot 2015-03-29 at 16.25.52 (12)

讀者可以自行推導。(11) 式與 (12) 式就是電磁場三維向量波動公式,它們每一個方向的分量都可以寫成下述模樣:

Screen Shot 2015-03-29 at 16.25.55 (13)

這就是波動方程,f(x,t是位置 x 與時間 t 的純量函數,u 是波的速率。所以我們發現電磁現象可被描述成一種波動,而且在真空下具有速率

Screen Shot 2015-03-29 at 16.25.59 (14)

所以這樣就證明了電磁波的存在。

(14) 式之中的真空電容率與真空磁導率皆為常數:

Screen Shot 2015-03-29 at 16.26.02

Screen Shot 2015-03-29 at 16.26.05

由此計算出 c 大約等於秒速 30 萬公里!「這不是光的速度嗎?何等巧合!」由於電磁波的速率與光速非常巧合地一致,這使得馬克士威不得不下結論說,光就是電磁波!

到了 1886 年,赫茲 (Heinrich Rudolf Hertz) 在實驗中證實了電磁波的存在,成為世上第一個傳送電磁波的人 ,頻率的單位赫茲 (Hz) 亦以他的名字命名。

當年,赫茲在課堂上做電磁波傳送實驗,有學生問他:「這樣做有什麼實際用途?」

赫茲回答:「一點用也沒有。」

誰又知道,今天差不多每個人都有一部手提電話、電台和電視台無時無刻都在廣播、現代人最重要的必需品不是食物不是水,而是 Wi-Fi。

馬克士威把電學與磁學結合成為電磁學,更把光學一同納入電磁學的範疇。這是物理史上一次極其重要的統一,大自然在人類面前展示出她偉大而美麗的一致性。不過,馬克士威的電磁理論當年亦曾被科學家所懷疑,因為 (14) 式的結論「光速是個常數」完全抵觸了牛頓的物理學觀點:時間及空間的絕對性。這個問題最終在 1905 年被愛因斯坦提出的狹義相對論解決了。

下一次,我們將會討論電磁波的特性,以及電磁學與相對論的關係。

我想,宇宙若存在一個創造者,祂說的應該是:「要有馬克士威方程!」就有了光。

你也能懂相對論

如果我說,相對論與日常生用息息相關,你會信嗎?或許就算我是一位知名的物理學教授,說服力相信也不會大得多少。以下我將要用比較淺白簡單的文字和少許初等代數,說明並說服大家,相對論並不難懂,而且它在日常經驗中是如此的明顯、如此的必要!

1905 年被稱為愛因斯坦的「奇蹟年」,愛因斯坦向世界提出了一套非常明顯、非常合理,但卻一直不為人所理解的理論狹義相對論 (special relativity)。被稱為「狹義」是因為這個理論只在慣性座標系中適用;換句話說,即是在所有沒有加速度的系統中都適用。狹義相對論建基於兩大假設:

  • 在所有的慣性系統中,所有有物理定律保持不變。
  • 對於所有系統中的所有觀測者,光速永遠不變,而且不是無限快的。

假設 (一)「所有自然定律不變」一般被稱為相對性原理 (principle of relativity),明顯比較合理,也比較容易理解。而乍看之下,光速相對於所有人都不變,而不論那人正在高速奔跑或者靜止不動都沒有關係,就顯得較為奇怪了。要理解這一點,我們需要由速度的意義說起。速度,就是在說「每單位時間內走了多遠」。說得再淺白一點,可以想像為「每秒走了多少米 (m/s)」。但這只是慣用單位的問題,你當然可以想成「每小時走了多少公里 (km/h)」,這正是司機們慣用的單位。在科學中,單位是至關重要的,因為不同單位的東西就是不同性質的東西,不可以混為一談的比較,好像一個蘋果永遠不會等於一個橙。

假設 (二)「光速相對所有人都不變」,就是說相對於所有人,光在每單位時間內走的距離都一樣。就是說,當你向著一道光奔跑,「直覺上」你會認為你所看到的光速比起你在靜止不動時快,因為在你向光跑去的「同時」,光亦向著你衝去。換成數學上的表達,就是說如果你用速度 向著光衝去,而我們用 代表你在靜止時看到的光速,那你看到的光速就會變成了c + v。這就是所謂的伽俐略變換,亦被一般人叫做「常識」。當然了啊,兩個物件互相衝去,當然會比其中一個不動、或兩者互相遠離快啊。但是,愛因斯坦卻說不論你用甚麼速度,向著光或離開光移動,你到的光速都仍然為 c,不多也不少!

你會說:「這怎可能!這是違反常識的!」我的回答是,一般人的常識存在非常明顯的漏洞,可是在愛因斯坦之前卻一直沒有人留意到這個嚴重的錯誤!這個錯誤就是「同時」這一概念的演繹。甚麼是「同時」?就是說大家的時鐘顯示的時間都一樣啊!對,這也是愛因斯坦對「同時」的理解。但現在要再問一道問題,如何知道兩個時鐘的時間一樣?

問題到肉了,可是你會覺得很無聊:「說甚麼廢話!只要我看到兩個鐘的指針拍著的時間就是了!」好,停一停,想一想:我們能「看」到東西,是因為光進入到我們的眼球穿過水晶體折射後投影在視網膜上。總言之,我們能看到東西,是因為有光。光以一定的速度前進,而且因為光速有限,因此在不同距離發出的光相對於同一個觀測者而言,會在不同時間到達。試想像,兩個人相距非常遠,而兩個人都帶著一個時鐘,那麼當然,任何一方都會覺得對方那個時鐘所發出的光,會比自己手上的時鐘所發出的光要用更多時間才能進入你的眼睛吧!好了,我希望大家想想,究竟事先要如何調整兩個時鐘,才能使你和對方都看到兩個時鐘是同步的呢?當然,這是辦不到的!因為兩個時鐘相距兩個人的距離都不同。若然你看到它們是同步的,對方就會看到他手上的走得較快,反之亦然。

如果你不太理解的話,請從頭思考一次,先不要跳過讀下去,因為剛才所說的就是相對論的精髓所在。重點是,要知道世界上並沒有「對所有人都同時」這個概念存在,因此也可以說,「同時」這個概念對每個人都不同;說「對大家來說都是同時」就是錯誤的,沒有可能發生。這是非常明顯的,但卻一直被我們所忽略。這完全是因為對於人類的感覺來說,光速 (每秒三十萬公里,能夠環繞地球七個半圈) 實在是太快、太快了。

好了,接下來我要介紹相對論導致的兩個非常重要的結果,這些結果令人類對時間及空間的概念有了根本上的改變:時間及空間其實是互相糾纏、難分難離的。在這部分我會以數學論證,狹義相對論所涉及的數學都只是基本數學運算以及向量微積分,相信對有會考物理根基的朋友來說不會太難。

Screen Shot 2015-03-27 at 16.36.51

在我們生活的三維空間中,每一件事件都可以用座標系的四個變量決定,就是 (長,闊,高,時間),數學表達為 (x, y, z, t)。假設在座標系 S 中有一原點 O,在 內觀測的人都會對每一件事件測得一組座標 (x, y, z, t);而現在有另一座標系 S’ 正在相對 S 以速度 向右移動,它的原點 O’ 在時間 t = 0 的時候剛好與 O 重疊,而在 S’ 內觀測的人都會對每一件事件測得一組座標 (x’, y’, z’, t’)。那麼,在我們的「常識」中,(x, y, z, t)(x’, y’, z’, t’) 的關係就是由伽俐略變換來決定:

Screen Shot 2015-03-27 at 16.36.58

這就是我們認為的「常識」的數學表達方法。留意當中 t’ = t,因為在傳統的觀念裡,「同時」這概念仍然存在。明顯地,在伽俐略變換當中,時間是獨立地流逝的,與空間 (x, y, z) 無關。可是,在上文中我們知道「同時」是不存在的。

Screen Shot 2015-03-27 at 16.36.32

想像小明站在一節正在行進的列車車廂正中間,在車頭及車尾都擺放了感應器。他向左右同時照射出兩道光束。對小明來說,車廂並沒有移動,所以他會看到兩道光束同時到達感應器。可是,對於一位站在月台上的人來說,因為列車正在向右移動,右邊的感應器不斷遠離光束,而左邊的就不斷靠邊光束。所以他會看到左邊那道光束首先到達感應器。因此,時間會因為觀測者的運動狀態不同而有所分別,而且這是非常明顯的!請注意,上述兩種情況都是正確的,沒有誰對誰錯,完全因為觀點與角度而已。回到 S 和 S’ 座標系的討論,因為兩個座標系的運動狀態不同,所以伽俐略變換就不是正確的描述了,我們必須改用另外一種座標變換方法,名為洛倫茲變換 (Lorentz Transformation):

Screen Shot 2015-03-27 at 16.37.04

有關這組公式的推導過程,有興趣的朋友可以參考任何相對論課本。在這裡我們有興趣的是:如果時間及空間確實根據以上方程組變換的話,會有甚麼有趣的事情發生?

Screen Shot 2015-03-27 at 16.37.11

首先,考慮一個「光鐘」,這是一個純粹由兩塊互相平行的平面鏡組成的計時器,有一束光在兩塊鏡之間來回反彈。然後我們定義這束光來回反彈一次的時間 Δt = 2h / 為一個時間單位,故此我們就有了這樣一種有趣的計時器。

Screen Shot 2015-03-27 at 16.37.17

現在,我們讓這個光鐘在 S 座標系中以水平方向向右以均速 移動。所以我們就知道,如果我們稱光鐘為 S’ 座標系,就有 Δt’ = 2h / c。在 座標系當中,光就是以斜線行進的,根據畢氐定理,我們得到

Screen Shot 2015-03-27 at 16.37.24 (1)

使用簡單代數運算求得 Δt

Screen Shot 2015-03-27 at 16.37.28 (2)

因為 v < c,所以分母必定小於 1 ,故此 Δt’ < Δt。換句話說,移動中的座標系的時間流逝得比較慢。這就是著名的時間遲滯 (Time Dilation) 。

除了移動中的人的時間在其他人眼中會變慢之外,移動中的物體看起來也會變短。這叫做長度收縮 (Length Contraction)。如果 L是物體靜止時的長度,L 是物體相對於觀測者以速度 v 移動時的長度,那麼我們就會得到

Screen Shot 2015-03-27 at 16.37.31 (3)

公式 (3) 的推導過程與公式 (2) 差不多,只要把光鐘轉個直角再考慮水平移動就可以了,有興趣的朋友可以自己當做練習試試推導。

以上兩個「違反直覺」的現象都已經被實驗觀測所證實了。其中一個重要的證明是關於宇宙射線的問題。每分每秒都有大量的宇宙射線攻擊著地球,這些射線多是帶電粒子諸如質子及電子等等,能量很高。幸好地球有磁場以及大氣層的保護,不然地球上就不可能有生命存在了。

一些粒子與大氣粒子碰撞後,會產生許多不同種類的粒子,向各個方向散射。這些粒子的壽命一般都非常短暫,就算在產生的一刻開始已經用接近光速前進,在它再衰變成其他粒子之前,前進的距離最多也只得幾百米。但是,雖然地球的大氣層厚度約為 100 公里,設置在地面上的儀器卻可以探測到它們!這完全是因為這些粒子以接近光速行進,相對論的效應就會變得很大。如果在靜止時這些粒子的壽命是 T,那麼根據時間遲滯現象,地面上的人就會測得它們的壽命為

Screen Shot 2015-03-27 at 16.37.38 (4)

其中 是粒子的速度。明顯地,當 非常接近 c 的時候,T’ 就會變得非常大,所以它們有足夠的時間可以穿過厚厚的大氣層落到地面。

我最後想介紹的是著名的愛因斯坦速度相加法則。在早前的討論中,我們已經明白到,在光速不是無限快的條件下,時間必須是「相對」的。亦即是說,對於不同運動狀態的觀測者,時間的流逝速率各有不同。同樣地對於空間來說也是如此。因此,我們就不能說兩個互相靠近的人的相對速度 v’,會簡單地為 v’ = v1 + v2,其中 v和 v分別為兩個人的速度。那麼 v’ 應該如何表達才對呢?其實簡單得很,只要把洛倫茲公式對時間微分就可以了。詳細的做法可以參考教科書,其結果為

Screen Shot 2015-03-27 at 16.37.41 (5)

因此可以看到在相對論下,相對速度 v’ 比較小。如果代入文章開頭的例子,你和光束互相衝向對方,就有

Screen Shot 2015-03-27 at 16.37.45 (6)

所以你會驚訝地發現,c + 仍然是 c!這是當然的,因為相對論本身必須符合它的假設:光速不變。

其實狹義相對論還有許多有趣的題目可以討論的,例如著名的質能公式 E = mc^2、雙生子悖論、能量-動量四維向量、以及相對論性電磁場理論等等,或許在以後我會和大家深入討論。而愛因斯坦在 1916 年提出的廣義相對論 (general relativity),則是一套把重力與加速度都包含在內的時空理論,能夠非常準確地描述我們身處的宇宙。廣義相對論所涉及的數學非常深奧,需要使用到十分抽象的黎曼幾何以及張量的概念,確實並非每個學生也能明白。在以後我會試試為大家說明廣義相對論的重要性。總而言之,在這篇文章中,我希望大家明白的事,是相對論其實並非一般人想像的那麼深奧難懂。至少,就狹義相對論而言,只需要中學程度的物理及數學知識就可以了。

無知的價值

甚麼是科學?科學是狂野的,科學家需要想像力。我不肯定這是否與藝術家的想像力相似。從前,人類想像世界是平坦的一塊陸地,被站在烏龜背上的大象托起;也有些人認為世界是被一個大湯碗蓋著的,外面有天堂也有地獄,如果能夠到達外頭看看的話必定十分有趣。

這些故事真美,美得藝術家們都以它們作創作的題材,一些不朽佳作流傳後世使我們能夠一窺古人浪漫的智慧。但科學家卻用種種理論破壞了這種美,他們會說世界是由原子構成,重力使星球形成,各種化學作用使生物得以繁衍。

但我會問:「難道這不比古代傳說都美麗嗎?」從前的人幻想我們都住在大象背上,現在我們知道我們其實住在一顆巨大石頭上面,這上頭有陸地、有海洋、有熱熱的內核、有各種各樣的生態、地殼會活動形成新的山坡和河谷……這顆石頭有一個很科幻的名字「地球」。地球由於自身重力作用而形成球體,而且亦因為重力,帶動著上面的人以時速 16000 公里繞著一個更巨大的火球轉動,同時又有另外幾個行星加上幾千萬顆小行星一同繞著這個大火球轉動。有些行動緩慢,幾百年、幾千年、甚至幾萬年才繞一個圈,有些卻有如一個個活蹦亂跳的小孩一樣到處衝來衝去……真是令人難以置信啊!

但如果你一直觀察下去,你又會發現這些運動不是雜亂無章的:一種叫做重力的東西,依循平方反比律,使得一個個星球按照不同的距離以不同的速度、不同的方向在太空中起舞。而這個叫做重力的東西不單止由大陽作用於行星之上,同時亦由行星作用於住在上面的一切東西。正正因為這條無形的安全帶,令我們不會被快速自轉的地球拋出太空,令我們可以進行各種活動。這種令足球急變下墮的力量,與令人造衛星留在軌道上的力量,竟然是同一樣的東西!這是個多麼的奇妙、多麼的美麗動人的故事!

可能有人會說:「科學家把世界描述得太過精確了,扼殺了種種的可能性啊!」但事實上,科學家可能才是對世界的運行方式最不確定的人呢!在這裡我所說的那種「不確定」,並不是一無所知、胡說八道的那種。只是你要知道,科學定律並不等於大自然本身,科學定律永遠不可能是「正確」的。科學家永遠都只是在猜,如果世界是如此這般的話會發生甚麼有趣的事情,然後再看看那些有趣的事情有沒有真的發生。只是其中有一些猜的比較準確,一些猜得沒那麼準確罷了,重要的是永遠沒有人能夠絕對的準確。

費曼 (Richard Feynman) 曾說過:

「我從來都活著,也從來都很無知,那容易得很。我想知道的是你如何能甚麼都知道!」

這種「不確定」、對大自然的「無知」就是科學的本質。我們永遠沒有辦法知道一粒電子的位置,我們只能知道它應該在哪裡附近;而更糟的是,其實電子只是一個概念,是一個幫助人類腦袋理解科學概念的東西。也許實際上根本就沒有電子,電子這個概念可能只是方便我們解釋自然現象的工具。

科學家觀察世界的方法其實與其他人一樣,用眼看,用心感受,用腦想像。科學家想像世界的運作方式其實差不多,只不過科學家要遵守的規矩嚴厲多了:它們必須不自相矛盾、能夠作出預測、理論結果又要符合實際觀測……這是多麼嚴苛的條件啊!

科學界沒有所謂的權威,只有大自然才是理論的最終挑選者。科學家不會因為某某是權威而輕易相信他的理論。一個好的科學家會把所有有線索自己重新追溯一次,如果在所有資料都經過大自然篩選之後,自己得出的結論與權威的一樣,沒有甚麼大不了,只不過表示這個權威應該沒弄錯而已。而如果結論不一樣的話,也只不過令到權威沒那麼權威罷了。

實際上,對現有理論存疑,是科學家最基本的工作之一。這種懷疑並不會減輕科學的重要性,更是人類智慧進步的泉源。因為沒有絕對的確定,沒有一個理論可以被認為是絕對正確的。只是在找不到更好的理論之前,姑且暫時使用而已。這種情況在歷史上屢見不鮮,由牛頓力學過渡到愛因斯坦的相對論就是一例。這種不確定不會消失,只會慢慢的隨著人類的智識提高而變得愈來愈小;但重要的是它永不會消失,永遠不會。一旦失去了它,人類進步的動力也就隨之消失,因為我們已經不用再想些甚麼新點子了。

把我今天的話總結一下:科學是不確定的,這種「不確定」與「存疑」的特徵對科學的意義重大;而且它能留給人類大大的想像空間,一個個美麗動人的理論模型於焉誕生。科學家早已習慣無知,這令他們有動力不斷找尋新的方向。費曼曾於演講中作出以下的省思:

 「因此,科學家早已習慣面對『存疑』和『不確定性』。所有的科學知識都是不確定的。這種與疑惑和不確定性打交道的經驗十分重要,我相信其中潛藏著巨大的價值,而且這種經驗超越科學,往外延伸。我相信,要解開任何從未被解開過的難題,你必須讓通向未知的門半開半掩地,容許『你可能沒全弄對』的可能性。假如你早已抱有定見,也許就找不到真正的答案。」

– 引自費曼於華盛頓大學第二屆約翰.丹茲講座的第一講「這個不科學的年代」

也許最經常說出「我不知道」的人,知道的比其他人更多。

比達的科學精神

潮文有曰:「細個鍾意睇悟空,大個就鍾意比達」相信好多人都有同感。

近日重看龍珠,發現比達思考模式其實很科學。

在地球,比達和納巴面對悟空,納巴問比達:「悟空的戰鬥力是多少?」

比達的偵測器顯示悟空的戰鬥力超過 8000 (英文版多說 It’s over 9000),比達就立即除下偵測器,憤怒的把它破壞了。我們看到比達的 EQ 不高,但納巴一口咬定是儀器出錯,而比達卻選擇相信儀器的數值,並親身證實偵測器顯示的數據。最後雖然不敵悟空,但比達的反應很科學:

當數據與我們的常識或感覺相違背時,通常錯都在自己而不是數據。

在搶奪龍珠的時候,比達知道菲利的力量在所有人之上,因此選擇暫時與地球戰士聯手,採取連橫合縱之計。這是合乎邏輯的決定,在科學研究中,經常會碰到大大小小的問題:

把問題按難易度逐一解決能更有效達到目的。

斯路遊戲中,比達以為自己在精神時光屋裡已經鍛鍊得非常強勁。可是當他看到悟空與斯路的戰鬥,就說雖然很不甘心,但確實自己根本超越不了悟空,而且更正確判斷形勢,知道再戰下去悟空必敗。這態度正正是組成科學的重要元素:

在事實面前,勇於承認不足和失敗。

比達在能夠變成超級撒亞人 2 後,仍正確判斷自己比不上悟空。他就假扮成為巴比迪的手下,以換取力量提昇。做科學研究需要多角度的思考:

當一個方法行不通時,應該敢於嘗試其他方法。

面對強大的敵人,悟空每次都很樂觀;而比達不像悟空,他選擇相信數據、採取合理的對策,而非一味相信奇蹟。當然,靈感和堅持對於科學家來說都是非常重要的,就像愛因斯坦堅持十多年最終獨力完成廣義相對論。

小時候,我們都喜歡悟空,也許亦曾嘲笑過比達。長大後,卻發現比達的科學精神和思維方法,其實更符合於分析這個世界。原來我們都會成為當天曾嘲笑過的人。

在《神與神》中,比達的堅持最終有了成果。雖然不是宇宙第一,但比達為了保護心愛的老婆,力量爆發與破壞神激戰,雖敗猶榮。而悟空也承認,比達終於超越了他。M 字額終於成為真男人,他的堅持終於有了成果,感動了不少大男孩:我們都曾希望自己是悟空,而比達卻是我們的寫照。