永恆的對稱:艾瑪.諾特(Emmy Noether)

艾瑪.諾特(Emmy Noether, 1882 – 1935)是個才能非常出眾的女性數學家,愛因斯坦稱她為史上最重要的數學家。她的研究解答了一個非常深刻的物理問題:為什麼我們的宇宙中存在能量守恆、動量守恆等守恆定律?

諾特生於德國巴伐利亞城市埃朗根(Erlangen),父親是位數學教授。她本來打算畢業後當法文和英文老師,但後來改變主意,進入他父親工作的埃朗根大學(Friedrich-Alexander-Universität Erlangen-Nürnberg)攻讀數學。她在 1907 年取得博士學位,著名的數學家大衛.希爾伯特(David Hilbert, 1862 – 1943)看見她的數學才華,希望把她聘到哥廷根大學(Georg-August-Universität Göttingen)做私人講師(Privatdozent,德國的一種講師資格,卻不一定是支薪的)。可是,哥廷根大學哲學系反對聘請諾特,他們說:「若然我們的軍士打仗回國,卻發現他們要接受一個女人的教導,他們會有何感想?」而且,他們不希望一個女人有資格在大學評議會中投票。

面對攻擊諾特的性別歧視,忿怒的希爾伯特反擊道:「我看不出申請人的性別是反對她成為私人講師的理由。畢竟,評議會並非澡堂。」

“I do not see that the sex of the candidate is an argument against her admission as a Privatdozent. After all, the Senate is not a bath-house.” – David Hilbert

儘管諾特得到希爾伯特的支持,哥廷根大學始終不肯聘請她。往後 7 年間,她在埃朗根數學院(Mathematical Institute of Erlangen)工作,而且是不支薪的。有時候,當她父親病倒了,她會代替他在埃朗根大學授課。直到 1915 年,希爾伯特和菲力斯.祈因(Felix Klein, 1849 – 1925)邀請她到哥廷根大學,以希爾伯特的名義講課。最後在 1919 年,哥廷根大學終於正式聘請諾特做私人講師。

諾特在數學中有很多重要的貢獻,而其中最著名的莫過於諾特定理(Noether’s Theorem):每個物理作用量的可微分對稱,都存在一個對應的守恆定律。簡單來說,諾特定理說物理守恆定律來自物理定律的對稱性。用更簡明的語言來說,就是如果物理定律在座標轉換後維持不變,那麼這個轉換背後就藏著一個守恆定律。例如,我們向著哪個方向做實驗都得到一樣的結果,這就代表了角動量守恆定律;我們在今天、昨天或明天做實驗結果都相同,這是因為能量守恆定律;動量守恆定律則使我們在宇宙中哪裡做實驗都沒有分別。

諾特定理對發展新的物理理論很有幫助。物理學家只要找出物理問題的對稱性,就能夠知道守恆的物理量;反之,也可以由守恆定律出發,推導出物理系統的運動方程。

諾特經常與同事合作研究,而且她的研究興趣非常廣泛。她的專長是抽象代數(abstract algebra),不過有時候在非專業的領域中,諾特也做出了不少貢獻。而且,她對分享知識和看法也毫不吝嗇,不會把想法收起來,而是會大方地與其他數學家討論,哪怕對方是同領域上的「對手」。有幾次,同行數學家用了諾特的想法發表論文,諾特也毫不介意。

諾特的研究和教學態度也廣受好評。儘管有時她會因為數學問題而與別人大吵一場,她的立場始終是針對數學而非針對個人。有次,她的兩個女學生留意到諾特的頭髮亂了,想上前提醍她,但她正在和其他學生討論數學,以致在兩小時內兩個女學生也找不到空間打斷諾特的討論。然而,諾特的課堂並不太有條理,她通常用課堂時間和學生討論最前沿的數學問題,有時她的講義內容甚至超越了當代領域的最新研究,這使有些學生感覺跟不上。不過諾特對學生非常關心,她的學生會稱她做「論文母親」,其他人也叫諾特的學生做「諾特的孩子」。

1933 年,納粹在德國橫行無道,擁有猶太血統的諾特被哥廷根大學開除。她移民到美國,在賓夕法尼亞州博懋學院(Bryn Mawr College)繼續做研究。可惜的是於 1935 年,她被診斷出有個卵巢囊腫,要入院做手術切除。手術之後三天,諾特情況慢慢好轉,然而在第四天她突然發高燒並陷入昏迷,未幾離世,享年 53 歲。

諾特受盡歧視,然而數學、科學發現都不會因身份、性別、種族或任何取向而改變。諾特與對稱,將一同永垂青史。

重力波GW170104再證愛因斯坦理論正確

才剛寫好一篇關於愛因斯坦廣義相對論的文章,美國的激光干涉重力波天文台(LIGO)又再發表論文,宣佈第三次探測到來自雙黑洞結合產生的重力波 GW170104。論文通過同儕審查,刊登在 Physical Review Letters

重力波是極大質量扭曲時空而產生的時空漣漪。根據廣義相對論,質量會令時空彎曲,這就是萬有引力的成因。如果極大質量以特定方式運動,其扭曲時空的效果就會形成波動,把能量以光速向外輻射開去。

與前兩次重力波 GW150914 和 GW151226 一樣,這次探測到的重力波來自雙黑洞結合系統,命名為 GW170104。兩個黑洞的質量分別為 31 和 19 太陽質量,它們互相環繞運動,越轉越快,最終碰撞結合成一個 49 太陽質量的黑洞。在此過程中,相等於約兩個太陽質量的能量的重力波會向四面八方輻射,比任何時刻宇宙中所有星系和恆星輻射的能量更高。

BHmassChartGW17
X射線望遠鏡發現的黑洞大小(紫色)和 LIGO 發現的黑洞大小(藍色)。Image courtesy of LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet).

然而,比起 GW150914 和 GW151226,GW170104 的雙黑洞來自 30 億光年以外,是 GW150914 和 GW151226 距離的兩倍以上。而且,這次結合得出的黑洞質量正好介乎前兩次的數值之間,使物理學家確認 20 倍太陽質量的黑洞族群確實存在。在 LIGO 探測到重力波之前,根據 X 射線望遠鏡的觀測,我們從未發現過 20 倍或以上太陽質量的恆星質量黑洞(stellar-mass black hole)。

隨著 2018 年歐洲的 Virgo 探測器將開始運作、而且 LIGO 將再次升級,探測重力波的靈敏度將會再次提高。屆時,科學家或許能夠探測到期待已久、來自中子星雙星系統或中子星-黑洞系統的重力波。物理學家預測,涉及中子星的結合事件除了重力波外,亦會釋放出高能量的電磁輻射如 X 射線和伽瑪射線,稱為伽瑪射線暴。同時探測到來自同一系統的重力波和電磁波,可以提高探測的可信性外,也能幫助天體物理學家分辨各種星體模型,有助了解這些極端星體的物理和演化。

GW170104 還告訴了我們很多訊息。例如,這次結合的兩個黑洞,至少有一個的自轉並非與它們互繞的平面方向相同。換句話說,至少其中一個黑洞的自轉軸是傾斜了的,就好像地球的自轉與公轉平面之間有個夾角一樣。這個發現,顯示兩個黑洞可能並非於同一雙星系統中誕生,而是在誕生後才互相捕捉,形成雙黑洞系統。

Screen Shot 2017-06-02 at 17.27.59
GW170104 的探測數據(灰色)、其小波分析結果(橙色)和雙黑洞電腦模擬結果(藍色)。上下分別為位於 Hanford, Washington 和 Livingston, Louisiana 兩座 LIGO 天文台的訊號。Abbott et al. (2017).

另外,研究員亦確認了愛因斯坦的重力波預言準備無誤。重力波與電磁波不同,不會發生色散現象。色散其實就是光線穿過介質後分開成各種顏色的現象,就如太陽光穿過雨後的水珠形成彩虹一樣。LIGO 沒有發現任何重力波發生色散的證據,愛因斯坦的廣義相對論又再下一城。

美國的 LIGO 團隊與歐洲的 Virgo 團隊合作,迄今已經探測到三個重力波和一個低可信性的疑似重力波。這兩個研究團隊人數過千,成員來自全球各地,也包括來自香港的研究員。作為研究伽瑪射線暴的天體物理學家,我期待探測到伴隨伽瑪射線暴的重力波,這將會是人類科學文明的極重要里程碑。

封面圖片:畫家想像的 GW170104 雙黑洞系統,圖中黑洞的自轉軸與互繞平面方向不同。Image courtesy of LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet).

延伸閲讀:

LIGO 論文:Abbott et al., “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2”, Phys. Rev. Lett. 118, 221101

LIGO 官方新聞稿:GW170104 Press Release LIGO Detects Gravitational Waves for Third Time Results confirm new population of black holes

我以往關於重力波的文章:
重力波:愛因斯坦的最後預言 (上)
重力波:愛因斯坦的最後預言 (中)
重力波:愛因斯坦的最後預言 (下)
銀河消息:人類首次聆聽重力波
愛因斯坦教授 你是正確的
重力波:2016年邵逸夫天文學奬

重力是什麼?愛因斯坦的廣義相對論

亞里士多德說重力是一種向下跌的慣性,物件越重下跌速度越快;牛頓說重力是物質互相吸引的萬有引力造成的,而且不論物件多重,下跌加速度都相同;愛因斯坦說,宇宙間根本沒有重「力」,物件之所以會互相吸引,是因為質量把時空扭曲了,物質沿著四維時空曲率「下跌」。

等等,我們不是活在三維空間裡面嗎?我們知道這個宇宙中有三個互相垂直的方向:前後、左右、上下。愛因斯坦發現,如果把時間也視作維度,就能用相對論描述整個宇宙的演化。三維空間加一維時間,構成了我們身處的宇宙。數學家能夠把 N 個維度的幾何規則推導出來,不過這個宇宙似乎只需要四維就足夠。

牛頓對決馬克士威

牛頓在 1687 年出版《自然哲學的數學原理》,闡述了他發現的運動定律和萬有引力定律。其實在牛頓的力學架構中,時間早己是一個維度。要討論力學,我們必須引入參考系概念。請不用擔心,參考系就是我們在基礎數學裡學過的座標而已。如果把三維空間的三個方向叫做 xyz,而時間叫做 t 的話,那麼要在兩個參考系 SS' 之間轉換,牛頓就說

x' = x - u_x t
y' = y - u_y t
z' = z - u_z t
t' = t

其中 u_xu_yu_z 分別是參考系 S' 相對參考系 S 在 xyz 方向上的速度,另外我們假設了 SS' 在時間 t = 0 時重合。這一組四式,我們稱之為伽利略變換。

我們可以看出,時間這個維度在牛頓力學體系裡,無論相對哪個參考系都是一樣的。換句話說,對於任何觀測者而言,彼此的時間都永遠相同。牛頓說,宇宙有一個絕對的時鐘,時間流逝速率對於任何人都一樣,永恆不變。

另一方面,因為速度等於位移除以時間,無論觀察的人跑得多快,一個物件的長度都不會改變。這就是牛頓的絕對時空觀,從 17 世紀到 19 世紀統治著物理學。在這段期間內所有科學實驗結果都與牛頓力學吻合,因此我們可說所有古典科學結論都建基於牛頓力學。

之不過,牛頓力學的天空在 19 世紀後半期已經開始烏雲密佈。如果時空的確是絕對的,那麼我們就可以找到一個絕對靜止的參考系。根據馬克士威在 1861 和 1862 年發表的電磁波動方程,電磁波——光——的速度是固定的,數值是秒速 299,792,458 米。這就引申了一個問題:光速相對哪個參考系有此定值?如果找到一個參考系,在這參考系之中測量的光速等於每秒 299,792,458 米,那麼這個就是絕對靜止的參考系。

當時的物理學家稱呼這個參考系做以太,認為以太就是光線的傳播媒介。如果宇宙是絕對靜止的,以太這個特別的參考系就好像宇宙本身,宇宙間一切事物都相對以太運動,而光速只有在以太參考系裡才是秒速 299,792,458 米。

然而,科學進程往往曲折離奇、耐人尋味。1887 年,邁克生和莫雷合作做了一個實驗,去測量地球在以太中的速度。他們用的儀器叫做干涉儀,可以精確地量度光速在兩個互相垂直的方向的差別,稱為光程差。因為地球環繞太陽運動,他們預期在四季不同日期會測量到不一樣的光程差。令所有人驚訝的是,光程差在一年中任何時間都一樣是零!

邁克生和莫雷的實驗結果顯示,無論觀測者的運動速率和方向,光速都一樣是秒速 299,792,458 米,絲毫不差。這個發現與牛頓力學完全相反,根據伽利略轉換,速度是會疊加的,所以在移動中的地球上沿不同方向行進的光線速率就是每秒 299,792,458 米加或減地球在該方向上相對以太參考系的速率。這是牛頓力學和馬克士威電磁波動方程結合的結果,可是大自然卻說這是錯的!

少年愛因斯坦的煩惱

問題到底出在哪裡呢?當時的物理學界並不知道,在德國南部城市慕尼黑裡,一個高中生的腦海裡的一個問題,竟然是答案的關鍵。愛因斯坦原本在慕尼黑讀高中,因為忍受不住德國軍訓式的課堂教育,以精神健康問題為由中途退學,到瑞士一個叫阿勞(Aarau)的小鎮完成中學課程,同時準備報考蘇黎世聯邦理工學院(ETH Zürich)。

從慕尼黑的中學到他自蘇黎世聯邦理工學院畢業、並在朋友的幫助下勉強找到一份瑞士專利局二級專利員工作的期間,這個問題一直佔據著愛因斯坦的思緒:如果一個人能夠騎在光束之上,會看見靜止的電磁波嗎?根據牛頓時空觀,答案是肯定的。可是,馬克士威的電磁理論中並沒有用到以太這個概念。如果光速恆定這結論適用於所有參考系呢?可是,這樣牛頓和馬克士威的理論就互相矛盾了。馬克士威錯了嗎?不可能,他的電磁理論太美麗了,不可能錯的⋯⋯牛頓錯了嗎?可是,兩百多年來他的理論從未出錯⋯⋯抑或是兩個都錯了?

顯然,這裡有個難題,而難題的解答並不會使牛頓和馬克士威皆大歡喜。「我們的常識哪裡出錯了嗎?」愛因斯坦問道。

愛因斯坦通常只用半天就完成整天要做的工作,然後他就會在專利局辦公桌上思考和推導物理。一天,他突然發現了我們常識中的漏洞,而這個靈感徹底改變了世界。

愛因斯坦想像有一列以超高速行駛的火車,在直線路軌兩端上的雲同時閃電。我們身處火車中央,相隔兩道閃電的距離剛好一樣。愛因斯坦問:我們會看到閃電同時發生嗎?答案是不會的,因為火車正向前面那道閃電駛過去,同時遠離後面那道閃電,因此我們會首先看見前面的閃光。現在,如果在路軌旁的地面站著我們的朋友,他亦距離兩道閃電同樣遠。因為他相對兩道閃電而言都是靜止的,他就會看見兩道閃電同時發生。

這就導致了一個驚人的結論:「同時」這個概念並非絕對,兩件事情的發生次序,與觀測者的運動狀態有關!換句話說,時間是相對的。

意識到時間並非絕對的愛因斯坦,在 1905 年發表了一篇題為《論動體的電動力學》的論文。他在論文中以不同運動狀態觀察法拉弟電磁感生效應,推導出狹義相對論的參考系變換公式:

x' = \frac{x - u t}{\sqrt{1-{(u/c)}^2}}
t' = \frac{t - xu/c}{\sqrt{1-{(u/c)}^2}}

為簡化表達式,我們設 S' 沿 x 軸方向運動。狹義相對論的所有結論都可以由這裡開始推導出來,我們稱之為洛倫茲變換。

速率 = 距離/時間。三個變數,如果其中一個不變而另一個改變,那麼第三個變數也就必須改變。常識說時間是絕對的,如果光線走過的距離改變,其速率也會改變。愛因斯坦指出時間並非絕對,光速才是。時間的改變補償了距離的改變,使光速永遠不變。

原來,我們對於時間的常識有誤;原來,馬克士威是正確的,錯的是牛頓;原來,光線能夠在真空中傳播,並不需要以太。就是這篇論文,再加上愛因斯坦同年發表的另一篇論文《一個物體的慣性依賴於它所包含的能量嗎?》推導出史上最著名的公式 E = mc^2,狹義相對論從此取代牛頓的絕對時空觀。

十年光陰追逐重力 答案就在等效原理

愛因斯坦的狹義相對論並沒有考慮重力。愛因斯坦發表狹義相對論後,就致力尋找一個更廣義、能把重力包括進去的相對時空理論。

這裡要提一個經常出現的錯誤觀念:狹義相對論不適用於加速的情況。例如,有個誤解是雙生子佯謬違反了狹義相對論,這是不正確的。狹義相對論能夠描述物件受力加速,也能夠處理加速參考系(即非慣性參考系)的情況。誤解可能來自於在狹義相對論裡,慣性和非慣性參考系的處理有所不同。但這只不過跟牛頓力學一樣,在非慣性參考系裡的觀測者會看到虛擬的力,例如離心力和科氏力等,都不是真正的力。但物理上,加速度對狹義相對論完全沒有影響。

既然如此,我們為什麼需要廣義相對論?既然狹義相對論可以處理加速度,那麼把牛頓的萬有引力定律放進去不就可以了嗎?愛因斯坦也曾嘗試這樣做,但牛頓萬有引力定律的問題在於所謂的超距作用:重力不用任何時間就能傳遞,而相對論卻說沒有資訊能夠超越光速。其實電磁力的情況也一樣,物理學家需要考慮電磁力傳遞的時間差,這是我們在大學物理課會學到的所謂推遲勢。由於電磁波就是光,電磁力的傳播速度就是光速。如果我們假設重力的傳播速度也是光速,同樣利用推遲勢把萬有引力定律改造,得出的計算數值與觀測結果並不相符。

另一方面,除了把重力包括在內,廣義相對論對慣性和非慣性參考系一視同仁。這是因為狹義相對論的時空只能是平直的,而廣義相對論的時空則可以是彎曲的。換句話說,在狹義相對論裡我們只能用「直線」來畫座標系,而在廣義相對論裡用任何曲或直的線來畫都可以。

1907 年,愛因斯坦突然靈機一觸,想到了等效原理(equivalence principle)。試想像我們身處一艘太空船裡,太空船沒有窗戶。我們發現自己感覺就如日常一樣。那麼,我們能否分辨太空船究竟正停泊在地球上,還是以與地球的地心加速度大小一樣的加速度往上加速?愛因斯坦說,我們不可能分辨得到。另外一個假想實驗是我們身處一部電梯之中,然而我們感受不到任何重力。那麼我們又能否分辨電梯究竟正在往下跌,還是漂浮在太空之中?愛因斯坦說,我們同樣不可能分辨得到。等效原理指出,重力和加速度並不單止效應相同,兩者實際上是同樣的東西!

愛因斯坦回憶說,想到了等效原理的一刻,是他一生中最快樂的一刻。然而,他往後足足用了八年時間,才能由等效原理建構出正確的廣義相對論公式。在尋找正確方程的過程中,愛因斯坦發現他知道的數學工具並不足夠。廣義相對論處理的是彎曲的時空,需要用到所謂的非歐幾里得幾何學。愛因斯坦在蘇黎世聯邦理工學院的同學格羅斯曼正好是研究非歐幾何學的教授,因此愛因斯坦向他請教了很多數學上的問題。縱使格羅斯曼並沒有直接參與廣義相對論的研究,他對愛因斯坦的幫助是找到正確方程的關鍵。

廣義相對論處理的非歐幾何時空問題,需要使用張量、度規、協變導數的數學概念。張量可想像成具有多個方向的向量,雖然數學上這不完全正確;度規用來描述時空的幾何結構,定義了在非歐幾何上距離的計算規則;協變導數則是在非歐幾何上做微分的方法。我們不用深入探討每一項,也能知道要得心應手地使用這些工具,必須經過長時間的數學訓練。雖然愛因斯坦的數學不差,他始終不是專業的數學家。

1915 年暑假,愛因斯坦受數學家希爾伯特邀請到哥廷根科學院(Akademie der Wissenschaften zu Göttingen)講了六場講座。他們互相交流了意見,而希爾伯特也開始尋找正確的廣義相對論公式。希爾伯特的進展非常快,漸漸令愛因斯坦感受到很大壓力,他害怕希爾伯特會比自己先找到正確公式。愛因斯坦在同年 11 月於柏林普魯士科學院(Preußische Akademie der Wissenschaften)講了四場講座,並在最後一場發表了他發現的廣義相對論方程式:

G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8 \pi G}{c^4} T_{\mu\nu}

現在,我們稱之為愛因斯坦場方程式(Einstein field equations)。這是一組十式獨立的張量微分方程組(對,一條公式已包含了十條方程),方程組的解不單止能夠描述物體在重力影響下的運動,更能描述整個宇宙的演化。因為在廣義相對論裡,時空就是宇宙本身。

驗證廣義相對論

廣義相對論說,物體並非受引力吸引,而是沿著四維時空的曲率「下跌」。而扭曲時空的,就是質量。相對論大師惠勒曾用一句精闢的話總結愛因斯坦場方程式:

「時空告訴物質如何運動,物質告訴時空如何彎曲。」

以下這個比喻是標準的廣義相對論解釋:想像有張彈床,彈床上放了個保齡球,令彈床向下陷。一個乒乓球滾過保齡球旁邊,就向彈床下陷的方向跌落去了。看起來就好像是保齡球吸引乒乓球一樣。只要把這個比喻變成四維版本,或多或少就跟物理現實一樣。

質量扭曲時空亦會導致一個牛頓力學沒有的結論,可以用來檢驗廣義相對論是否正確。由於重力不是一種力而是時空曲率,那麼就連沒有質量的光也會「跌落」時空的凹陷裡。1919 年,天文學家愛丁頓遠征非洲觀察日全食,記錄天狗食日時太陽附近的星光。他對比其他時候所觀察到同一天區的星星,發現星星的位置有輕微偏差,數值恰好與廣義相對論的預言吻合。

星光偏折是愛因斯坦廣義相對論的首個驗證。現在,天文學家利用觀察超大質量黑洞或星系團造成的光線偏折去研究非常遙遠的星系。這個類似光學透鏡的效應,叫做重力透鏡(gravitational lensing)。除此之外,廣義相對論還預測了很多物理效應,都已被一一證實。例如水星近日點進動(mercury perihelion precession),其數值與使用廣義相對論計算一致;時空會被自轉的星球扭曲,叫做參考系拖拽(frame dragging),已被人造衛星驗證;重力場越強時間流逝速率越慢,叫做重力時間遲滯(gravitational time dilation),已被非常準確的原子鐘證實;2015 年正值愛因斯坦發表廣義相對論 100 週年,人類終於直接探測到廣義相對論的最後一個未驗證的預言——重力波(gravitational wave),這是極大質量在時空中產生的漣漪。

重力波以光速前進,就跟重力傳遞的速度一樣。太陽平均距離地球 1 億 5 千萬公里,即光太約要走 8 分 20 秒的路程。假如太陽此刻突然消失,地球仍然會繞著前太陽位置繞 8 分 20 秒左右,才會「感到」太陽的重力消失了。

愛因斯坦的錯誤

不過,愛因斯坦一開始並不相信重力波存在。他移居美國後寫了一篇論證重力波不存在的論文,投到美國一家期刊。當年,同儕審查(peer review)在美國科學界已經是常規,但在德國科學界卻不然。愛因斯坦因為不滿期刊未經他同意就將論文交給一位專家審閱,忿而徹回了該論文。後來,愛因斯坦發現他論文中用來證明重力波不存在的數學出了錯。現在看來,他徹回論文此舉令他得以發現這個錯誤。

另一個關於廣義相對論的愛因斯坦犯下的錯,就是耳熟能詳的宇宙膨脹。愛因斯坦發現,他親手推導出來的場方程式說,宇宙不是正在膨脹就是在收縮。這是因為重力的本質,時空扭曲只會令物體互相吸引,不會排斥。愛因斯坦認為宇宙必然是靜止的,因此就在方程式裡加入了一個常數項用來平衡吸引力。這個常數項就是上述愛因斯坦場方程中的 \Lambda g_{\mu\nu},其中 \Lambda 就是所謂的宇宙常數。1929 年,哈勃發現宇宙正在膨脹,愛因斯坦就徹回了宇宙常數。現在,天文學家發現宇宙非但正在膨脹,而且膨脹正在加速,愛因斯坦加入宇宙常數似乎是正確的。

廣義相對論的展望

今天,很多物理學家在找尋比廣義相對論更上一層樓的新時空理論。雖然廣義相對論的預言從未出錯,但我們知道,它至少不是關於宇宙的完整理論,因為廣義相對論與量子力學並不相容。理論物理學家們正埋首研究量子重力理論,而天文學家們也正不斷以新的觀測去測試廣義相對論。沒有人知道再過百年之後,廣義相對論會否仍是主宰時空的理論。但愛因斯坦與相對論,肯定佔有人類文明史冊之中極重要的一頁。

延伸閱讀:

我於立場新聞寫的《廣義相對論 100 周年》系列:
誰是愛因斯坦?
與光同行 — 愛因斯坦
愛因斯坦:廣義相對論

我以往關於愛因斯坦和相對論的文章:
拋開常識的學者:愛因斯坦 (Albert Einstein)
你也能懂相對論
光的祕密
照亮相對論的光 (上)
照亮相對論的光 (下)
超光速與時間倒流:叮噹可否不要老
重力波:愛因斯坦的最後預言 (上)
重力波:愛因斯坦的最後預言 (中)
重力波:愛因斯坦的最後預言 (下)
淺談 E=mc^2:愛因斯坦 137 歲誕辰
愛因斯坦教授 你是正確的
重力波:2016年邵逸夫天文學奬
光速:宇宙高速公路的速度限制
相對論、量子力學、黑洞和反物質

我於物理雙月刊寫的關於邁克生-莫雷實驗的文章:
1907年諾貝爾物理獎:阿爾伯特・邁克生

【打電話問功夫】教你如何用物理震碎內臟

一個方法是打斷骨頭,使骨頭插穿內臟。研究顯示,大約3,300牛頓的力就足以打斷正常的胸骨。牛頓是力的單位,如果一個人以10m/s^2的加速度出拳(等於地心加速度),3,300牛頓就等於330公斤的重拳,不過對職業拳擊手來說應該不算太難。打斷胸骨非常危險,有可能插穿肺部或心臟。不過,這應該不算「震碎」吧。

如果要盡量不傷及皮膚而震碎內臟,就不可以很大力打下去。方法是有的,就是要用很小力度打出很多拳,而且出拳的頻率要與內臟的共振頻率一樣。

這是什麼原理呢?當我們以不同頻率振動一個物體,其實就是在用不同頻率向物體輸入能量。根據物體的形狀、大小、材質等因素,它會傾向吸收以特定頻率輸入的能量,這個特定頻率就稱為共振頻率。當我們不斷以共振頻率輸入能量,物體的振幅就會越來越大,直到物體強度不足以保持形狀,最終碎裂。

所以,要震碎內臟是可能的,只要我們知道想要破壞的內臟的共振頻率,再以共振頻率快速打出連續普通拳即可。不過,問題是我們如何知道對方體內各個內臟的共振頻率?雖然不同內臟的共振頻率可以靠實驗去找出來,但各人體型不同,內臟的大小也就有所差異了。

其中一個方法是,在比賽之前陪同對手去醫院做一次全身磁力共振成像,就可以測量對手各內臟的形狀、大小和位置,然後再去找一個差不多大小的內臟做共振實驗,就能準確找出對手每個內臟的共振頻率,比賽起來就更得心應手了。不過,如果走去問「因為我想震碎你的內臟,請你跟我去做一次磁力共振成像好嗎?」很難想像對手會答應吧。

另外一個方法,在科學研究之中叫做「試探性」,就是找很多個與對手體型差不多的人,拿到他們的內臟(別問我要如何做,我教物理學的,不是生物學),然後逐一測量每個人內臟的共振頻率,取其平均值。在比賽時,只要不斷以該平均值差不多的頻率嘗試,應該就能夠在實戰中找出對手內臟的實際共振頻率,輕易將之震碎。我建議雙手各以不同頻率一起使出連續普通拳,高手過招,攻擊機會稍縱即逝,兩隻手一起試,所需時間少一半。

說了這麼多,究竟人體內臟的共振頻率是多少啊?我稍為Google了一下,找到一些用人體模型做的共振頻率研究。因為是用模型去做,不能準確量度,而且也不能模擬內臟。普遍認為,人體如受到10Hz至1,000Hz的振盪,都會造成不同程度的不適和傷害,嚴重的可以影響新陳代謝、破壞神經系統,甚至令心臟停止跳動。哇,殺人了!不過,10Hz即是1秒打10拳,已經快過葉問李小龍了吧。

所以,與其希望震碎對手內臟,不如認真鍛練身體,打出一記認真拳直接破敵吧。

e89032d2gw1eieomzpaikj21bs0yc7cy

延伸閱讀:

從物理看一拳超人有多強》- 余海峯

卡西尼號:在土星環看見宇宙

To boldly go where no man has gone before. – Star Trek

20170427_Saturn-GF-Pass1
卡西尼號穿越土星與土星環之間時拍攝的土星表面大氣情況,可見一巨型風暴。Image courtesy of NASA.

地球時間2017年4月26號,環繞土星運行的卡西尼太空深測器,勇敢到達前人未境之地,穿越了土星與土星環之間。

這次俯衝,展開了卡西尼號最後任務的序幕。接下來幾個月,卡西尼號每6日都會俯衝土星與土星環之間一次。2017年9月15號,卡西尼號就會直接衝進土星大氣層,完成長達20年的任務。卡西尼號將會沿途收集土星數據,即時傳送回地球,直至土星大氣將卡西尼號壓碎一刻。

1997年10月15號升空的卡西尼號曾兩度探訪金星,借助金星重力使出天體力學絕技「重力助推」,金星重力就好像彈弓把卡西尼號彈射飛向外太陽系。然後它又掠過月球和地球、小行星2685以及木星,然後於2004年7月1號進入環繞土星軌道。

Saturn's_rings_dark_side_mosaic

Saturn's_rings_in_visible_light_and_radio
卡西尼號拍攝的土星環。Image courtesy of NASA.

卡西尼號並非隻身探險,它身上帶著另一個探測器惠更斯號。2004年12月25號,惠更斯號與卡西尼號分離,並於2005年1月14號成功降落土衛六泰坦。惠更斯號把泰坦上拍攝的影像和所有科學數據傳送上卡西尼號,然後由卡西尼號傳回地球。這是史上首次降落於外太陽系天體的任務。

公元1655年,荷蘭天文學家克里斯蒂安・惠更斯(Christiaan Huygens, 1629-1695)提出,伽利略在1610年觀察到的土星「耳朵」其實是個環。惠更斯使用自製的折射望遠鏡發現了泰坦,繼伽利略發現木星衛星後首次觀察到其他行星的衛星。

1671年,法國天文學家喬凡尼・卡西尼(Giovanni Domenico Cassini, 1625-1712)發現了土衛三、土衛四、土衛五和土衛八。卡西尼也發現了土星環的一條主要縫隙,現在我們稱之為卡西尼環縫。因為卡西尼和惠更斯對土星的觀察和研究貢獻,他們成為了土星天文研究的代名詞。

The_Day_the_Earth_smiled
卡西尼號拍攝的土星全貌照片「The Day The Earth Smiled」。右下角的一點,就是地球。那天,卡西尼號拍下了地球的微笑。Image courtesy of NASA.

過去20年,卡西尼號收集了非常豐富的科學數據,使愚蠢的人類眼界大開。透過卡西尼號的眼睛,我們發現了土星7個新的衛星,更親眼目睹一個新衛星正在土星環之中形成;我們看見了泰坦上的液態烷河流;我們看見了30年一次的土星巨型風暴「大白班」狂暴地釋放輻射;我們看見土星極地的六邊型旋渦;我們發現土衛二南極地底可能有液態水海洋存在。還有更多、更多。

人類從12億公里外看見了地球,看見了我們自己。看見了人類在廣闊宇宙裡如何渺小、探索宇宙的夢想又如何偉大。

謝謝大家/那麼守時/來到這兒
我在土星的演唱會/現在開始
只要讓我在/土星環的基地
看你/看你/看到你
——《土星環》

謝謝您們,卡西尼號、惠更斯號,再見了。

7392_Cassini_Prox_and_Graze
卡西尼號最後任務的軌道。Image courtesy of NASA.

延伸閱讀:

NASA卡西尼號最後任務網頁

封面圖片:卡西尼號拍攝的土星 (NASA)

比賽是對學問的侮辱

「世事洞明皆學問,人情練達即文章。」——曹雪芹《紅樓夢》

從什麼時候開始,我們習慣把學問標籤成「值得」和「不值得」?

有別於諾貝爾奬之類只能由其他人提名的奬項,有些機構以比賽形式發放奬金,要學者寫文、拍片去推銷自己的研究。

得獎者有機會去研究自己喜愛的學問,我由衷恭賀。但對於比賽本身,我從心底鄙視。

費曼在1965年得到諾貝爾獎後,他以前的一個學生Koichi Mano寫信祝賀他。費曼回信問Mano現在做些什麼研究,Mano回覆說自己的研究是「卑微」的。費曼看了,就回信說:「那些你能解決、能幫助解決、能夠出力的問題,就是值得花時間研究的問題。⋯⋯如果我們能夠做些東西,這問題就不小、不瑣碎。你說你名不見經傳?對你妻兒來說,沒有這回事。」

比賽,是對學問的侮辱。

Dear Koichi,

I was very happy to hear from you, and that you have such a position in the Research Laboratories.

Unfortunately your letter made me unhappy for you seem to be truly sad. It seems that the influence of your teacher has been to give you a false idea of what are worthwhile problems. The worthwhile problems are the ones you can really solve or help solve, the ones you can really contribute something to. A problem is grand in science if it lies before us unsolved and we see some way for us to make some headway into it. I would advise you to take even simpler, or as you say, humbler, problems until you find some you can really solve easily, no matter how trivial. You will get the pleasure of success, and of helping your fellow man, even if it is only to answer a question in the mind of a colleague less able than you. You must not take away from yourself these pleasures because you have some erroneous idea of what is worthwhile.

You met me at the peak of my career when I seemed to you to be concerned with problems close to the gods. But at the same time I had another Ph.D. Student (Albert Hibbs) whose thesis was on how it is that the winds build up waves blowing over water in the sea. I accepted him as a student because he came to me with the problem he wanted to solve. With you I made a mistake, I gave you the problem instead of letting you find your own; and left you with a wrong idea of what is interesting or pleasant or important to work on (namely those problems you see you may do something about). I am sorry, excuse me. I hope by this letter to correct it a little.

I have worked on innumerable problems that you would call humble, but which I enjoyed and felt very good about because I sometimes could partially succeed. For example, experiments on the coefficient of friction on highly polished surfaces, to try to learn something about how friction worked (failure). Or, how elastic properties of crystals depends on the forces between the atoms in them, or how to make electroplated metal stick to plastic objects (like radio knobs). Or, how neutrons diffuse out of Uranium. Or, the reflection of electromagnetic waves from films coating glass. The development of shock waves in explosions. The design of a neutron counter. Why some elements capture electrons from the L-orbits, but not the K-orbits. General theory of how to fold paper to make a certain type of child’s toy (called flexagons). The energy levels in the light nuclei. The theory of turbulence (I have spent several years on it without success). Plus all the “grander” problems of quantum theory.

No problem is too small or too trivial if we can really do something about it.

You say you are a nameless man. You are not to your wife and to your child. You will not long remain so to your immediate colleagues if you can answer their simple questions when they come into your office. You are not nameless to me. Do not remain nameless to yourself – it is too sad a way to be. Know your place in the world and evaluate yourself fairly, not in terms of your naïve ideals of your own youth, nor in terms of what you erroneously imagine your teacher’s ideals are.

Best of luck and happiness.

Sincerely,
Richard P. Feynman

天才與悲劇:馬克斯・普朗克 (Max Planck)

Max_Planck_1878
1878年的普朗克。
馬克斯・普朗克 (Max Karl Ernst Ludwig Planck, 1858 – 1947) 出身學者家族,他的曾祖父和祖父都是神學教授,父親則是法律教授。普朗克在德國北部城市基爾出生,於兄弟姊妹之中排行第六。

在他九歲的時候,普朗克舉家搬到南部城市慕尼黑居住。在慕尼黑的中學裡,他受到一位數學家老師 Hermann Müller 的教導,學習了很多關於力學、數學及天文學的知識。普朗克在 Müller 那裡第一次學到能量守恆定律,Müller 可說是他的物理學啟蒙老師。

普朗克在1874年進入慕尼黑大學(Ludwig-Maximilians-Universität München)攻讀物理。有趣的是,普朗克的物理學教授 Philipp von Jolly 曾勸他不要讀物理,因為「物理學的所有東西都已被發現了,剩下的工作只是填補漏洞」。更有趣的是普朗克的回答,他說自己「並不想發現新的東西,只想理解物理學的基礎,或者能夠加深對它們的理解」。

“Ich hege nicht den Wunsch, Neuland zu entdecken, sondern lediglich, die bereits bestehenden Fundamente der physikalischen Wissenschaft zu verstehen, vielleicht auch noch zu vertiefen.” – Max Planck

普朗克曾於1877年到柏林洪堡大學(Humboldt-Universität zu Berlin)學習一年,斯間曾跟隨物理學家亥姆霍茲(Hermann von Helmholtz)、基爾霍夫(Gustav Kirchhof)、數學家魏爾斯特拉斯(Karl Weierstraß)學習。他於1879年取得博士學位、1880年取得任教大學的資格,之後五年都在慕尼黑當沒有薪金的私人講師(Privatdozent)。1885年,普朗克終於受到基爾大學聘請,成為助理教授。1889年,普朗克在亥姆霍茲的幫助下,繼承基爾霍夫在柏林洪堡大學的職位,並在1892年成為正教授。根據邁特納(Lise Meitner)所說,普朗克教學從不出錯,是她聽過之中最好的。

“…using no notes, never making mistakes, never faltering; the best lecturer I ever heard.” – Lise Meitner

普朗克的物理學功力十分深厚,但原來他曾經想過以音樂家為職業。他學過唱歌,也懂得演奏鋼琴、管風琴和大提琴,亦會創作歌曲和歌劇。這一點與小提琴不離手的愛因斯坦很相似。普朗克在柏林居住的時候,很多著名的科學家如愛因斯坦、邁特納、哈因(Otto Hahn)等,都經常到普朗克家中作客,在討論科學之餘一起演奏音樂。

Max-Planck-3

那麼,究竟普朗克發現了什麼重要的物理學理論?在古典物理學概念裡,能量是連續的,可以被分成任意小的量。這聽起來相當自然而且合理,可是當物理學家計算出物體放出的輻射有多少時,就發現了一個大難題。根據古典熱力學,瑞利男爵(Lord Rayleigh)推導出一條公式去計算物體輻射的光譜。瑞利發現輻射強度與輻射的頻率的二次方成正比。換句話說,物件所釋放出來的輻射頻率越高,能量越大。因此,當我們計算所有波長的輻射總量時,我們就會得到無限大!這明顯違反實驗觀察吧……我們並沒有輻射出無限多的能量啊。

這個問題一直困擾著物理學家們。後來,威廉・維因(Wilhelm Wien)找到了一條公式,解決了高頻率輻射能量無限大的問題。維因的公式可以描述高頻率的情況,而瑞利的公式則描述低頻率的情況。可是我們又有另一個問題:兩條公式不能結合在一起!

普朗克從1894年開始研究這個問題。他在1900年發現,如果輻射的能量並非連續的,即有著一個最小的單位,那麼他就可以推導出一條完全符合實驗結果的公式,同時能夠結合維因和瑞利的方程。現在,我們稱這條終極公式為普朗克定律(Planck’s law)。符合普朗克定律的輻射光譜,又叫做黑體輻射(blackbody radiation)。

普朗克的單位能量概念,我們稱之為量子(quanta),而輻射的量子就即是光量子(photon)。他發現,光量子的能量與其頻率成正比,即

E = h \nu

其中 E 是能量、\nu 是頻率。這個結論完全違反傳統輻射理論中,輻射能量與輻射強度成正比。公式裡的比例常數 h 就是著名的普朗克常數(Planck constant),支配著宇宙間所有量子現象。普朗克提出的量子概念打開了現代物理學的一道大門,徹底改變了物理學的發展方向。

不過,普朗克本人也未能立即接受量子論。他說當時感到絕望,並已準備好放棄所有已知的物理學。

“I was ready to sacrifice any of my previous convictions about physics.” – Max Planck

普朗克對數學邏輯的信念最終令他接受量子論。後來,馬克斯・波恩(Max Born)這樣描述普朗克:「自然地,他[馬克斯・普朗克]是個保守派;他沒有革命思想,並徹底地懷疑所有推測。然而,他對基於事實的邏輯推論的強迫性信念,強到使他沒有在震撼物理學的革命性概念前畏縮。」

“He [Max Planck] was, by nature, a conservative mind; he had nothing of the revolutionary and was thoroughly skeptical about speculations. Yet his belief in the compelling force of logical reasoning from facts was so strong that he did not flinch from announcing the most revolutionary idea which ever has shaken physics.” – Max Born

1905年,愛因斯坦利用普朗克的光量子概念解釋了光電效應。普朗克和其他物理學家漸漸接受量子論的真實性,量子力學在20世紀初以極速發展。今天,我們從前沿物理到生物導航,都可以找到量子現象與普朗克常數的身影。2018年,國際計量委員會(International Committee for Weights and Measures)將在巴黎的會議中舉行投票,決定是否以普朗克常數重新定義質量的單位:公斤。普朗克於1900年提出的量子,在118年後仍然深深影響著人類的科學發展。

普朗克的名字在德國科學界幾乎無所不在。例如由普朗克建立的德國物理學會(Deutsche Physikalische Gesellschaft),自1929年起頒發普朗克獎章(Max Planck Medal)給𠎀出的理論物理學研究,第一屆就是頒給普朗克本人和愛因斯坦。德國最大的科研機構威廉皇家學會(Kaiser-Wilhelm-Gesellschaft,簡稱KWG)亦於1948年改名成馬克斯.普朗克學會(Max-Planck-Gesellschaft,簡稱MPG)。MPG其下共有83個以普朗克命名的科研機構,我亦有幸於其中的馬克斯.普朗克地外物理研究所(Max-Planck-Institut für extraterrestrische Physik)取得博士學位。

普朗克在科學上的成果豐碩,但他的一生其實充滿悲傷與不幸。1887年,普朗克與青梅竹馬馬莉(Marie)結婚,兩人生下四個孩子。可是在1909年,瑪莉卻因肺癆過世。兩年後,普朗克再與他的表妹瑪加(Marga)結婚,生下第五個孩子。1914年,第一次世界大戰爆發,普朗克的次子艾連(Erwin)被法軍監禁,長子卡爾(Karl)在凡爾登戰役戰死。之後,他的一對孖生女兒因難產死去,而艾連最後亦因在1944年暗殺希特拉失敗而被處死。我們根本無法想像普朗克承受的傷痛有多大。

planckletter1-highres
普朗克寫給希特拉的信。他懇求希特拉看在他已87歲,年事已高,放過他的兒子艾連。艾連在1945年1月23號被處決,普朗克痛不欲生,兩年後逝世。

“My Führer!

I am most deeply shaken by the message that my son Erwin has been sentenced to death by the People’s Court.

The acknowledgement for my achievements in service of our fatherland, which you, my Führer, have expressed towards me in repeated and most honouring way, makes me confident that you will lend your ear to an imploring 87-year old.

As the gratitude of the German people for my life’s work, which has become an everlasting intellectual wealth of Germany, I am pleading for my son’s life.

Max Planck”

第二次世界大戰期間,普朗克並沒有參與迫害猶太人的活動,他也曾幫助很多猶太科學家在1930年代繼續在德國保住工作。在普朗克的領導下,KWG曾在一段時間裡不受納綷政權的干預。縱使當時納粹政府禁止教授「猶太人的科學」,普朗克仍堅持繼續教授愛因斯坦的理論,因此他和其他不支持納綷的物理學家被攻擊為「白種猶太人」(weiße Juden)。納粹聲稱普朗克擁有1/16的猶太血統,普朗克否認了這個指控。

tumblr_ncfghasEoF1tmo5bpo1_400
普朗克與第一任妻子馬莉,和他們的四個子女。
普朗克在1926年從柏林洪堡大學退休,只保留各物理學會的職務。由於普朗克不肯與納粹政權合作,他們就阻撓普朗克在1937年KWG主席任期屆滿後連任,並控制了普魯士科學院(Prussian Academy),逼使普朗克辭職以示抗議。沒有職務在身的普朗克四處旅行講公開講座,又在1943年成功攀上阿爾卑斯山脈的一個三千米高的山峰。

1944年,普朗克於柏林的家被空襲摧毀,他的所有科學紀錄和書信全部化為灰燼。為逃避戰火,他與瑪加和兒子逃到哥廷根。最後,艾連的死令普朗克失去生存希望。量子物理之父普朗克於1947年10月4號與世長辭。

普朗克看著妻子與四個子女死亡,這種傷痛非常人能理解。如果我們繼續自相殘殺、破壞我們在宇宙中唯一的家園,我們如何有面目享受現代科技帶來的便利生活、又如何面對這些獻出一生去改變人類生活的科學先驅?

延伸閱讀:

拋開常識的學者:愛因斯坦 (Albert Einstein)》- 余海峯

原子能之母:邁特納 (Lise Meitner)》- 余海峯

人類將重新定義公斤 從此宇宙間牛扒質量都相同》- 余海峯(物理雙月刊)

1904年諾貝爾物理獎:約翰.斯特拉特》- 余海峯(物理雙月刊)

1911諾貝爾物理獎:威廉・維因》- 余海峯(物理雙月刊)